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Abstract

This paper develops a generalized framework for identifying causal impacts in a reduced-

form manner under kinked settings when agents can manipulate their choices around the

threshold. The causal estimation using a bunching framework was initially developed by Di-

amond and Persson (2017) under notched settings. Many empirical applications of bunching

designs involve kinked settings. We first propose a model-free causal estimator in kinked set-

tings with sharp bunching and then extend to the scenarios with diffuse bunching, misreporting,

optimization frictions, and heterogeneity. The estimation method is mostly non-parametric and

accounts for the interior response under kinked settings. Applying the proposed approach, we

estimate how medical subsidies affect outpatient behaviors in China.
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1 Introduction

In many empirical setups, agents received treatment based on whether their value of a variable

(also referred to as the “assignment variable” or “running variable” in the literature) is above or

below a known cutoff. For example, students with test scores above the cutoff are admitted to better

schools/colleges (e.g.,Zimmerman [2019], Pop-Eleches and Urquiola [2013]); workers with annual

income above the threshold are subject to higher tax rates (Saez [2010]). Such thresholds feature

discontinuity in the level of choice sets/treatment probabilities (referred to as “notches” with level

change only hereafter), or discontinuity in the slope of choice sets/treatment probabilities (referred

to as “kinks” hereafter), or discontinuity in both the level and the slope of choice sets/treatment

probabilities (referred to as “notches” with both level and slope changes hereafter). These non-

linear designs facilitate treatment effects identification and policy impact evaluation. The litera-

ture distinguishes between two conceptually different non-linear designs, based on whether agents

(e.g., students, workers, patients, firms) can fully manipulate their measures around the cutoff.

Specifically, when agents cannot fully manipulate the assignment variable around the threshold,

regression discontinuity design (RDD), regression kink design (RKD), and regression probabil-

ity jump and kink design (RPJKD) are adopted depending on whether agents face the notched or

kinked policies. However, when agents can fully manipulate their measure and decide whether to

locate above or below the threshold, assumptions in RDD, RKD, and RPJKD are no longer valid.

In such scenarios, bunching methods are used to study agents’ behavior (see literature review by

Kleven [2016]).

Early studies in the bunching literature focus on identifying the key elasticity (e.g., the elas-

ticity of taxable income to the net of tax rate), which involves estimating the counterfactual den-

sity distribution of the assignment variable (when agents cannot manipulate their measure). Saez

[2010] and Chetty et al. [2011] developed the bunching method in kinked settings, while Kleven

and Waseem [2013] developed the bunching method in notched settings. The method has been de-

ployed in various settings, such as R&D (Chen et al. [2021], ), housing markets (Best and Kleven

[2018], Best et al. [2020], Cloyne et al. [2019]). However, fewer studies focus on the impacts of the

agents’ manipulation behaviors due to the kinked policy on other outcome variables. Diamond and

Persson [2017] proposed a causal estimator in notch settings. By assuming that manipulation only

happens within a certain region around the cutoff, they recover the counterfactual density and out-

come distributions within the manipulation region when there is no manipulation, by extrapolating
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the corresponding distributions outside the manipulation region into the manipulation region. The

difference between the average observed and counterfactual values within the manipulation region

reveals the treatment effect from the agents’ responses. Diamond and Persson [2017] complements

the RDD method when agents can fully manipulate the assignment variable. A critical part of Di-

amond and Persson [2017] is that manipulation only happens within a certain region, which may

not be true when there is a discontinuity in the slope of choice sets/treatment probabilities. Fac-

ing slope changes (i.e., change in marginal incentives), agents to one side of the cutoff would all

adjust their assignment variable upwards/downwards, which are denoted as “interior responses” 1

Therefore, there would not be a manipulation region, which makes Diamond and Persson [2017]’s

method invalid under kink settings as well as notch settings with both level and slope changes. In

this paper, we develop a framework for estimating the treatment effects of agents’ manipulation be-

havior due to the kinked policy on other outcome variables2, which complements the RKD method

when agents can manipulate the assignment variables. Our method is model-free and is based on

agents’ interior response behavior which draws less attention in the previous bunching literature.

Our approach is centered around agents’ interior responses under kink settings. Consider a

counterfactual linear policy with the tax/co-payment rate being the same as that below the kink.

When a kinked policy is introduced, agents below the kink remain unchanged, while agents above

the kink face a change in marginal incentives and adjust their assignment variable accordingly.

Specifically, agents with counterfactual values just above the kink would bunch at the kink (denoted

as bunchers), and agents with counterfactual values further above the kink would all reduce their

value by a constant share but stay above the kink. Since the marginal bunching agent is also the

marginal shifting agent, we can infer the relative change for shifting agents using the ratio of the

marginal bunching agent’s counterfactual value and the kink. This important feature allows us to

recover the counterfactual locations for shifting agents and hence obtains the counterfactual density

distribution non-parametrically. 3

1Chetty et al. [2011] address the interior response issue for the counterfactual density estimation
by imposing the integration constraint (i.e., assuming that the number of observations under the
observed and counterfactual distributions is the same) and by assuming that the observed density
in the interior response part is a parallel shift of the counterfactual one.

2The method could also be applied to notched settings with both level and slope changes upon
small modification, as the fundamental issue addressed here is the interior response.

3It involves a computation algorithm. First, given an initial guess of marginal bunchers’ loca-
tion, we can infer a counterfactual density distribution using the feature that shifting agents adjust
their values of assignment variable by the same constant share as the marginal bunching agent.
Second, based on the inferred counterfactual density distribution, we compute excess bunching

3



We then plot the conditional outcome distribution. Since we have recovered the counter-

factual location for shifting agents, we can relocate shifting agents back to their counterfactual

locations, which generates an auxiliary outcome distribution. This relocation process preserves

the smoothness of the underlying agents’ characteristics, however, the auxiliary outcome distri-

bution still includes the impacts from the changes in the assignment variable and the changes in

tax/copayments/benefits (due to the kinked policy and changes in the assignment variable). Com-

pared to the counterfactual outcome distribution under the linear policy, the auxiliary outcome

distribution would feature a level change and a slope change.4 Agents below the kink face the

same incentive and do not adjust their assignment variable, their observed outcome distribution is

the same as the counterfactual outcome distribution. We estimate the level and slope changes using

the observed outcome distribution below the kink and the auxiliary outcome distribution above the

kink.5 The estimated level change and slope change allow us to exactly identify two structural pa-

rameters, which reflect how changes in the assignment variable directly affect the outcome variable

and how changes in tax/copayment/benefits affect outcome outcome variable. The structural pa-

rameters also work as sufficient statistics, allowing us to simulate the impacts of alternative kinked

policies.

Our methodology could be used more generally to study the treatment effects of a kinked

policy under bunching settings with various extensions, including diffused bunching, rounding

in agents’ choices, potential misreporting, the existence of stayers (unresponsive agents) due to

optimization frictions or inattention, and heterogeneous treatment effects.

We apply our treatment effect estimator to study the kinked cost-sharing design under China’s

health insurance system. Specifically, the co-payment ratio for rural and urban non-employed pa-

tients increased from 50% to 100% when their accumulated annual medical expenses exceeded the

policy statutory threshold. This generates a discontinuity in the marginal cost of treatment borne

by patients when their annual eligible expenditure is above the given threshold. We found that

and find the updated value of the marginal bunchers’ location by integrating over the inferred
counterfactual density distribution from just above the kink till excess bunching equals missing
mass. We repeat this process till it converges. Details are discussed in section 3.1.

4In regression kink designs, there is only slope change because agents cannot manipulate their
assignment variable and the slope change in outcome distribution is driven by the kinked pol-
icy. In bunching setups, there is additional level change because agents do adjust their assign-
ment variable, which may affect outcome variables directly and indirectly through changes in
tax/copayments.

5Since the relocation process resolves the selection issue in bunching, we can extrapolate the
counterfactual outcome distribution rightwards or the auxiliary outcome distribution leftwards.
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patients adjust their annual medical expenses and bunch at the threshold. Compared to the coun-

terfactual scenario where the co-payment rate is 50%, patients visit the hospital less often when

the co-payment rate increases to 100%. This indicates a significant amount of compressed medical

demand due to patients’ financial concerns.

Our paper is related to three threads of literature. First, we contribute to the literature on

treatment effect estimation and policy evaluation using quasi-experimental approaches. The fact

that agents can fully determine their value of the assignment variable above or below the threshold

indicates that the identifying assumption for RDD or RKD fails. Under the notched design with

bunching mass around the cutoff, Carneiro et al. [2015] proposed the “donut” regression design

method (“donut” RD) by excluding a certain manipulative region around the threshold to solve this

issue. The estimation precision of the “donut” RD estimator depends on how large the excluded

region is. Alternatively, Diamond and Persson [2017] proposes a Wald estimator that captures the

causal impact of manipulation on the subset of agents that are chosen for manipulation. Their

method shares certain similarities with “donut” RD in the sense that both assume manipulation

happens within a certain range around the threshold.6 Our paper contributes to this literature by

providing the framework to estimate the average treatment effects of a kinked policy with manip-

ulative agents, where the interior response agents lead to the un-neglectful shift of density dis-

tribution to one side of the threshold, immediately invalidating the assumption that manipulation

happens within a certain region around the cutoff in previous literature.

Second, we contribute to the estimation of counterfactual density distribution in bunching

estimation. The critical step in bunching estimation relies on estimating the counterfactual density

distribution in the counterfactual situation absent of kinks or notches. The standard approach to

obtaining such counterfactual was developed by Chetty et al. [2011] in the context of kinks and

extended by Kleven and Waseem [2013] to notches. The standard approach is to fit a flexible

polynomial to the observed distribution for the region slightly away from the threshold and then

extrapolate the fitted distribution to the threshold, under the assumption that the counterfactual

distribution is smooth around the threshold. However, agents to one side of the cutoff would

adjust their locations in response to the changed marginal incentive, leading to an interior shift

of density distribution. This fact results in a biased estimation of the counterfactual distribution

if we do not account for the shift in the observed distribution brought by these interior response

6Under a notched design with discrete change in both the level and the marginal incentives at the
threshold, the assumption that manipulation happens within a certain region around the threshold
is invalid.
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agents (also known as shifting agents). The magnitude of the interior response depends on the

slope of the density distribution and the size of the change in incentives. In general, such interior

response effects are larger for kinks than for notches because kinks usually feature a larger change

in marginal incentives.7

In kinked designs, Chetty et al. [2011] addresses this interior response issue by assuming that

the counterfactual density to one side of the threshold is a constant upwards/downwards movement

of the observed density distribution. However, in most setups with changes in marginal incentives,

interior response agents would adjust their locations by a constant percentage and hence by differ-

ent magnitudes depending on their initial values. Therefore, interior responses would lead to a non-

parallel shift of density distribution along the x-axis, which indicates that the commonly adopted

method proposed by Chetty et al. [2011] could lead to certain biases. In this paper, we propose

an algorithm for counterfactual density estimation that features the exact interior responses. In ad-

dition, our proposed estimation method also works under notched settings with different marginal

incentives.

Third, we contribute to the literature which explores various extensions in the bunching

methodology. Some extensions focus on causal identification when there is no discontinuity in

the policy but agents’ choices are truncated at 0. For example, the number of hours children spend

watching TV has to be above or equal to 0. Caetano [2015] exploits such setups for identifying

potential selection in reduced-form estimation. Caetano et al. [2023] propose causal estimators for

identifying treatment effects at 0. Other extensions include a two-dimensional bunching approach

by Cox et al. [2021], and non-identification of elasticity under a single budget set by Blomquist

et al. [2021]. we distinguish our paper from these papers in the sense that we focus on different

research topics and setups. Specifically, we focus on identifying causal effects under kink settings

where agents can manipulate and the cutoff is not at the truncated point.

The rest of the paper is arranged as follows. Section II discusses a generalized framework

under kinked settings, which covers the basic setup, interior response of shifting agents, and causal

effects under sharp bunching and under bunching with diffusion. Section III discusses the estima-

tion strategy for estimating the counterfactual density distribution and the counterfactual outcome

distribution. Section IV extends the treatment effect estimation to various scenarios, such as re-

labelling, rounding, and stayers due to optimization frictions and heterogeneity in the structural

7In notched designs, researchers often ignore the interior response and assume manipulation
only happens within a certain region around the threshold. This would lead to potentially biased
estimates of counterfactual density and elasticity as well.
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parameter. Section V applies the proposed causal estimator to the kinked coinsurance policy in

China, where the medical care system, data, bunching pattern, density and outcome distributions,

and the treatment effects are presented. Section VI concludes.

2 A Generalized Framework under the Kink Setting

We elaborate a theoretical framework for the causal inference under the kink setting in this section

and defer the empirical execution to the next section. Specifically, we first lay out the basic setup,

and derive the optimal interior responses for the complying agents. Then we study the causal

inference under the sharp bunching scenario. Finally, we consider the diffusion case for the causal

impact under the kink setting.

2.1 Setup

Consider a focal kinked policy in which agents face a tax rate (or co-payment rate) of t if their

value of z is below a statutory cutoff z∗, but face a higher marginal tax rate (or co-payment rate) of

t +∆t if their z > z∗. Denote the amount of money that agents pay under the kinked policy as T (z).

That is,

T (z) =


t × z if z ≤ z∗

(t +∆t)× z−∆tz∗ if z > z∗
(1)

Denote the optimal response function of z from agents maximizing their objective functions

as z = z(D,n), where D = 1 indicates that agents face the lower marginal tax/co-payment rate of

t and D = 0 indicates agents face the high marginal tax/co-payment rate of t +∆t; and n is an

unobserved agent heterogeneity, with z(D,n) increasing in n. In general, z(1,n)> z(0,n), i.e., z is

higher when the tax rate (co-payment rate) on z is lower on the margin.

Agents’ optimal choice z under the kinked policy can ben shown as:
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z =



z(1,n) if n ≤ nL

z∗ if n ∈ (nL,nH ].

z(0,n) if n > nH

(2)

For the counterfactual policy, we consider a linear policy where agents always face the low

tax rate (co-payment rate) of t.8 That is, T ct(z) = t × zct . Consequently, agents’ optimal choices

are zct = z(1,n).

For agents with n < nL, the optimal z under the kinked policy remains the same as zct in the

counterfactual policy as they face the same tax rate (co-payment rate) of t. We denote these agents

as “always-takers”. Next, for agents with n > nH , they reduce their z in response to the higher

marginal tax rate (co-payment rate) of t +∆t under the kinked policy, (z = z(0,n)< z(1,n) = zct),

but stay in the interior of the upper bracket, compared to the counterfactual policy. We denote them

as “shifters”, or, agents with “interior response”. Finally, for agents with n ∈ (nL,nH ], their optimal

choice under the kinked policy is to reduce their z and bunch at the threshold z∗. We denote them

as “bunchers”, as their behavior produces excess bunching in the density distribution at the kink

point z∗ when the kinked policy is introduced.

Remark 1 The literature on bunching has specified the agent’s objective function, in which

the optimization leads to a specific function of z(D,φ). For example, Saez (2010) and subsequent

studies (e.g., Chetty et al. 2011; Einav, Finkelstein, and Schrimpf 2017.) typically assume a static

quasi-linear, iso-elastic preference over consumption and labor supply (or medical spending) to

obtain agents’ response elasticity to tax (or coinsurance) kinks. Specifically, Saez (2010) con-

siders a quasi-linear utility function u(c,z) = z−T (z)− n
1+1/e × ( z

n)
1+1/e, where T (z) is the tax

system; n denotes the individual heterogeneity in abilities; and e is the labor supply elasticity. The

counterfactual scenario is characterized by a linear tax system with T (z) = t × z, whereas the focal

kinked tax policy introduces an increase in the marginal tax rate from t to t +∆t at the earnings

threshold z∗. The optimal labor supply choice can be derived as

8Alternatively, one can consider a counterfactual policy where agents always face the high tax
rate (co-payment rate) of t +∆t. These two cases generate identical density responses (Kleven
[2016]), but have different implications on the casual inference. We study the counterfactual linear
policy with a high tax rate in the extensions.
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z =



n× (1− t)e if n ≤ z∗
(1−t)e ≡ nL

z∗ if n ∈ (nL,nH ]

n× (1− t −∆t)e if n > z∗
(1−t−∆t)e ≡ nH

This optimal choice equation under the kinked policy corresponds to Eq.(4) in Chetty et al. (2011)

and Eq.(5) in Einav, Finkelstein, and Schrimpf (2017).

To derive the key features of optimal responses, following the above literature, we make a

weak assumption of the optimal response function of z:

Assumption 1 (Separability). Assume that z(D,n) = f (D;e)g(n;e).

Here, e is a structural parameter, such as the elasticity of labor supply to the net of the tax

rate or a semi-elasticity that relates the probability of participation/consumption to the percentage

change in financial incentives; f (D;e) is a discrete function with D being 0 or 1; and g(n;e) is

the distribution of n. Assumption 1 states the separability of the marginal tax (or co-payment) rate

(D = 0/1) and agents’ heterogeneity n in the optimal choice function.

Remark 2 Almost all studies on the bunching estimation make Assumption 1, such as the

model with no uncertainty and quasi-linear, iso-elastic preferences (Saez, 2010; Chetty et al, 2011;

Einav, Finkelstein, and Schrimpf, 2017). For example, in Saez (2010), the optimal income choices

z(1,n) = (1− t)e ×n and z(0,n) = (1− t −∆t)e ×n satisfy the Assumption 1.

Given Assumption 1, Equation (2) can be re-written as:

z =



z(1,n) if n ≤ nL

z∗ if n ∈ (nL,nH ]

z(0,n) = z(1,n) f (0;e)
f (1;e) if n > nH

(3)

That is, agents with n > nH who originally choose z(1,n) under the counterfactual linear policy

respond to the kinked policy by setting z = z(0,n) = z(1,n) f (0;e)
f (1;e) > z∗.
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For marginal bunchers with nH , its optimal choices under the kinked policy and under the

counterfactual linear policy are, respectively, given by z = z(0,nH) = z∗ and zct = z(1,nH) = z∗+

∆z∗, where ∆z∗ is the change in z by the marginal bunching agent with nH due to the introduction

of the kinked policy. The excess bunching at the kink point is the cumulative density of bunchers

, i.e., agents with n ∈ (nL,nH ]. And given the one-to-one mapping between n and z (as shown in

Equation (3)), the bunching mass can be calculated as:

B =
∫ z∗+∆z∗

z∗
hct(z)dz, (4)

where hct(z) denotes the counterfactual density distribution of z (i.e., the one under the linear low

tax/co-payment rate plan).9

For all agents with n > nH , we have,

zct

z
=

z(1,n)
z(0,n)

=
f (1;e)
f (0;e)

=
z∗+∆z∗

z∗
. (5)

Equation (5) characterizes the relationship between the original location (under the counterfactual

linear policy) and the new location (under the kinked policy) for each shifting agent.

Remark 3 Studies in the bunching literature largely use Equation (5) to back out the struc-

tural parameter from the estimated value of ∆z∗. For example, in Saez (2010), Equation (5) is

(1−t−∆t
1−t )e = z∗+∆z∗

z∗ .

Combining Equations (3) and (5), we can summarize the change in z as

z
zct =



z(1,n)
z(1,n) = 1 if n ≤ nH

z∗
z(1,n) if n ∈ (nL,nH ]

z(0,n)
z(1,n) =

f (0;e)
f (1;e) =

z∗
z∗+∆z∗ if n > nH

. (6)

Hence, moving from the counterfactual linear scenario to the state with the kinked policy, all agents

with n > nH (shifters) reduce their z by a constant share , i.e.,
( z∗

z∗+∆z∗
)
−1 < 0, but do not bunch

at the cutoff z∗.10 Meanwhile, agents with n ∈ (nL,nH ] (bunchers) reduce their z to bunch at the

9The observed density distribution of z under the kinked policy is denoted by h(z).
10Note that each shifter’s adjustment (zct − z) is not a constant, it depends on the initial location
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cutoff z∗. By contrast, agents with the n ≤ nL(always-takers) remain unchanged.

Equation (6) enables us to estimate the counterfactual density distribution hct() and the

marginal bunchers’ response ∆z∗ nonparametrically (details will be discussed in section 3.1).

2.2 Causal Inference under Kinked Bunching

The bunching literature has focused on estimating the key structural parameter e since the method-

ological development by Saez (2010) and Kleven and Waseam (2013). What is equally (if not

more) important is whether the bunching technique can be used to do a causal inference analysis;

that is, estimating the effects from the introduction of a kinked policy on other outcome variables.

In this subsection, we develop a methodological framework for the causal effects under the kinked

design,11 and defer empirical details of the estimation framework in section 3.

We start with the sharp bunching case to illustrate how our estimation framework works, and

then discuss the case of bunching wish diffusion, which matches the data pattern. Meanwhile, as

shown in subsection 2.1, the kinked policy divides agents into three groups: shifters, bunchers,

and always-takers. Given that always-takers do not respond to the kinked policy, we examine the

average treatment effects for shifters and bunchers.

2.2.1 Policy effect for Shifters

For shifters (i.e., n > nH), the average policy effect (denoted as τ
T E,shi f ter
y ) can be calculated as:

τ
T E,shi f ter
y = E[yn − yct

n |n ∈ shi f ters], (7)

where yn ≡ y(zn) is the observed outcome for shifting agent n under the kinked policy and y() is

the observed outcome distribution that maps the effort zn to the outcome under the kinked policy;

and yct
n ≡ yct(zn) is the corresponding outcome for shifting agent n under the counterfactual lin-

ear policy and yct() is the outcome distribution that maps the effort zn to the outcome under the

(zct). Alternatively, we can take the logarithm of z so that each shifter’s adjustment will be a
constant, i.e., lnzct − lnz = ln z∗+∆z∗

z∗ .
11In a companion work, Diamond and Persson (2017) study the causal estimation using the

notch design.
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counterfactual linear policy.

The policy generates two possible effects. First, in response to the kinked policy, agent n

reduces its optimal effort zn. That is, agent n sets the optimal effort as zn = zct
n

z∗
z∗+∆z∗ under the

kinked policy, where zct
n is the optimal effort under the counterfactual linear policy. The reduction

in the effort z could directly affect outcome y. For example, a reduction in taxable income could

affect consumption, or a reduction in medical expenses could affect health. Define semi-elasticity

µn ≡ ∆yn
∆zn/zn

. Therefore, we can calculate the direct effect of z on y as (yn−yct
n )|due to direct change in z =

µn
( z∗

z∗+∆z∗ −1
)
.

Second, the reduction in z also allows agent n to enjoy taxes (or fees) repayment, which could

in turn affect outcome y. Recall that under the counterfactual policy, we have T ct(zct) = t × zct and

under the kinked policy, we have T (z) = (t +∆t)× z−∆t × z∗ = (t +∆t) z∗
z∗+∆z∗ × zct −∆t × z∗.

From zct
n to zn, agent n obtain ∆Tn ≡ T (zn)−T ct(zct

n ). Define −λn ≡ ∆yn
∆Tn

. Hence, we can calculate

the effect of change in tax or fees (T ) on y as (yn − yct
n )|due to change in T = −λn

(
(t +∆t) z∗

z∗+∆z∗ ×
zct

n −∆t × z∗− t × zct
n
)
=−λnzct

n
(
(t +∆t) z∗

z∗+∆z∗ − t
)
+λn∆t × z∗.

To estimate the policy effect, we make the following assumption:

Assumption 2 (Additive). Assume the effects of z and T on outcome y are additive.

Remark 4. Assumption 2 satisfies most of the utility model used in the bunching literature.

For example, the quasi-linear, iso-elastic preference model separates income and effort effects in

an additive way. Meanwhile, Assumption 2 is largely invoked in the multiple linear regressions,

i.e., multiple regressors in the separable and additive format.

Given Assumption 2, we can rewrite Equation (8) as:12

τ
T E,shi f ter
y = E[yn − yct

n |n ∈ shi f ters]

= E
[
µn
( z∗

z∗+∆z∗
−1
)
−λnzct

n
(
(t +∆t)

z∗

z∗+∆z∗
− t
)
+λn∆t × z∗

]
.

= E(µn)
( z∗

z∗+∆z∗
−1
)
−E(λnzct

n )

(
(t +∆t)

z∗

z∗+∆z∗
− t
)
+E(λn)∆t × z∗

The change in z would generate three changes to the outcome distribution.

12We provide a formal ground-up proof in Appendix B. Specifically, the proof incorporates three
features: individual heterogeneity in the initial value of y, and the impacts of z and T on y.
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First, the relocation effect. Even if the change in z has no impact on y, such a “relocation”

behavior (from zct to z) would change the outcome distribution. Therefore, if we directly compare

yct with y along the y-axis, we are not comparing the same agent. However, we do know where each

agent has moved to. Therefore, if we relocate each agent under the kinked policy back to his/her

counterfactual location, then, comparing the values along the y-axis would give us the treatment

effect on “shifters”.

Treatment Effect on “Shifters”

τ
T E,shi f ter
y = E[yn − yct

n |n ∈ shi f ters]

=
∫ zmax

z∗eltaz∗

(
yr(zct)− yct(zct)

)
hct(zct)∫ zmax

z∗+∆z∗ hct(zct)dzct
dzct (8)

where yr(zct) ≡ y(zct z∗
z∗+∆z∗ ) denotes the resulting auxiliary outcome distribution when we

locate shifters at z back to their counterfactual location zct using the relation that z= zct z∗
z∗+∆z∗ . That

is, when we reshape the observed outcome distribution based on the changes in agents’ location of

z, the outcome distribution changes from y(z) to y(zct z∗
z∗+∆z∗ )≡ yr(zct).

Remark 4. Estimation of treatment effect on shifters only requires yct(zct),hct(zct). There-

fore, the estimation is model-free. However, one might want to understand what drives the change

in outcome as a result of the kinked policy. The following second and third points cover it.

Assume homogeneous preference and thus single response elasticities across agents (i.e., µn =

µ,λn = λ ), a condition commonly made in the bunching literature (see, e.g., Saez 2010; Chetty et

al. 2011, Kleven 2016;). The above equation can be simplified as

τ
T E,shi f ter
y = µ

( z∗

z∗+∆z∗
−1
)
−λE(zct

n )

(
(t +∆t)

z∗

z∗+∆z∗
− t
)
+λ∆t × z∗. (9)

Identifying Sufficient Statistics. We claim µ and λ are sufficient statistics for estimating

treatment effects under policy simulations because changes in policy cutoffs or tax/co-payment

rates would result in changes in z and hence changes in outcome variables. We propose estimating

these parameters by exploiting the level and slope change at z∗ when comparing the distributions
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yct(zct) and the extrapolated yr(zct). Specifically, we have

Level Change at z∗ = µ
( z∗

z∗+∆z∗
−1
)
−λ (t +∆t)z∗

( z∗

z∗+∆z∗
−1
)

(10)

Slope Change at z∗ = −λ

(
(t +∆t)

z∗

z∗+∆z∗
− t
)

(11)

where estimation of the level change and slope change at z∗ is explained in the next subsection 3.2.

Remark 5 Note that calibration process identifies the parameters µ,λ for shifters. Because it

is based on the slope and level changes at z∗ by comparing the counterfactual outcome distribution

with the extrapolated auxiliary distribution of shifters.

Figure 1 illustrates the change in outcome distribution of shifters when the kinked policy is

introduced.

Figure 1: Change of outcome distribution for shifters

2.2.2 Change in outcome Distributions of Bunchers

As discussed in subsection 2.1, agents with zct ∈ (z∗,z∗+∆z∗], i.e., n ∈ (nL,nH ], would reduce their

value of z and bunch at the cutoff (z = z∗) under the kinked policy. The changes in z would also

14



generate changes in the outcome distribution.

Under the sharp bunching scenario, agents with zct ∈ (z∗,z∗+∆z∗] relocate to z = z∗. As it is

impossible to find a one-to-one mapping for each bunching agent, we take all the bunching agents

as an entity and identify the average treatment effect on “bunchers” by comparing changes in the

average outcome value.

Treatment Effect on “bunchers” under Sharp bunching

τ
T E,buncher
y = E

[
yn − yct

n |n ∈ buncher
]

= Y buncher −Y buncher,ct

= ybuncher(z∗)−
∫ z∗+∆z∗

z∗
yct(zct)

hct(zct)∫ z∗+∆z∗
z∗ hct(zct)dzct

dzct (12)

where ybuncher(z∗) denotes the average outcome of bunchers under the kinked policy, the estimation

of which is shown below.

Specifically, under the kinked policy, observations at the threshold z∗ contain two groups of

agents: (1) bunching agents with zct ∈ (z∗,z∗+∆z∗] who decrease their value to the threshold z= z∗

in response to the kinked policy; (2) always-takers with zct = z∗ who remain at the threshold z= z∗.

By contrast, under the counterfactual linear policy, there is only always-takers at the threshold

z∗. Therefore, the density of bunchers under the kinked policy is given as hbunch(z∗) = h(z∗)−
hct(z∗). Further, the observed average outcome y(z∗) is the weighted average of bunchers and

always-takers, i.e., y(z∗) =
(
ybuncher(z∗)hbuncher(z∗) + yct(z∗)hct(z∗)

) 1
h(z∗) . Therefore, we obtain

the average outcome of bunchers under the kinked policy ybuncher(z∗). That is,

ybuncher(z∗) =
y(z∗)h(z∗)− yct(z∗)hct(z∗)

h(z∗)−hct(z∗)
. (13)

Figure 2 illustrates the change in outcome distribution of bunchers when the kinked policy

is introduced.

Treatment Effect on “bunchers” under Diffuse bunching

In reality, agents may bunch around the threshold (i.e., [z∗−u1,z∗+u2]) due to optimization

frictions. Still, we take all the bunching agents as an entity and identify the average treatment

effect on “bunchers” by comparing changes in the average outcome value. However, there is one

difference. Under sharp bunching, we only need to estimate the average outcome of bunchers under
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Figure 2: Change of outcome distribution for bunchers

the kinked state at z∗ (because all bunchers relocated to z∗); by contrast, under diffuse bunching,

we now need to estimate the average outcome of bunchers under the kinked state over the whole

diffuse region [z∗−u1,z∗+u2].

τ
T E,buncher
y = E

[
yn − yct

n |n ∈ buncher
]

= Y buncher −Y buncher,ct

=
∫ z∗+u2

z∗−u1

ybuncher(z)
hbunch(z)∫ z∗+u2

z∗−u1
hbunch(z)dz

dz−
∫ z∗+∆z∗

z∗
yct(zct)

hct(zct)∫ z∗+∆z∗
z∗ hct(zct)dzct

dzct

(14)

where ybuncher(z) (with z ∈ [z∗ − u1,z∗ + u2] denotes the average outcome of bunchers in each

bin under the kinked policy and hbuncher(z) denotes the corresponding density. The estimation of

ybuncher(z) and hbuncher(z) are explained below.

Specifically, consider first the left side of the diffusion region [z∗−u1,z∗]. Under the kinked

policy, this region contains two groups of agents: the bunchers and always-takers. Under the

counterfactual policy, this region only has always-takers. Similar to equation (13) in the sharp

bunching case, for each z∈ [z∗−u1,z∗], we can back out the outcome for bunchers under the kinked
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policy by deducting the average outcome of always-takers from the average observed outcome.

That is,

ybuncher(z) =
y(z)h(z)− yct(z)hct(z)

h(z)−hct(z)
,∀z ∈ [z∗−u1,z∗] (15)

Also, we have hbuncher(z) = h1(z)−hct(z),∀z ∈ [z∗−u1,z∗].

Next, consider the right side of the diffusion region (z∗,z∗+u2]. In the observed state, it also

contains two groups of agents: the bunchers and shifters. Under the counterfactual linear policy,

it only contains shifters. Therefore, for each z ∈ (z∗,z∗+ u2], we can back out the outcome for

bunchers under the kinked policy by deducting the average outcome of shifters from the average

observed outcome. That is,

ybuncher(z) =
y(z)h(z)− yshi f ter(z)hshi f ter(z)

h(z)−hshi f ter(z)
,∀z ∈ (z∗,z∗+u2] (16)

where hshi f ter(z) and yshi f ter(z) correspond to the density and outcome distributions of shifters for

z ∈ (z∗,z∗+ u2], which can be inferred by extrapolating the distributions of shifting agents (the

observed distributions) in the region with z > z∗+ u2 to the diffuse region with z ∈ (z∗,z∗+ u2].

Similarily, we have hbuncher(z) = h(z)−hshi f ter(z),∀z ∈ (z∗,z∗+u2].

Remark 6 Note that while sharp bunching agents and diffused bunching agents may be dif-

ferent, it does not pose any threats to our estimation framework. This is because we consider

all bunching agents as an entity, and compare their average observed outcomes under the kinked

policy to the average counterfactual outcomes under the linear policy. In other words, we are com-

paring the same group of agents under the treated and the control states. Meanwhile, the data allow

us to distinguish sharp bunchers from diffused bunchers (under-shooting or over-shooting), from

which we can compare their predetermined characteristics to further shed light on the selection of

diffused bunching.

Remark 7 For bunching agents, a reduction in z due to the kinked policy could directly affect

y, shown as µ( z∗
zct − 1),∀zct ∈ (z∗,z∗+∆z∗]. Meanwhile, change in T could also affect y, shown

as −λ (z∗− zct)t,∀zct ∈ (z∗,z∗+∆z∗]. Therefore, we can draw the linkage between the treatment

effect on “bunchers” and structural parameters: τ
T E,buncher
y =

∫ z∗+∆z∗
z∗ µ( z∗

zct −1)−λ (z∗− zct)tdzct .

Hence, one can also use the treatment effect on bunchers τ
T E,buncher
y to identify the parameters

(µ,λ ) for bunchers, provided that there are at least two kinks to provide enough moments.
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3 Empirical Estimation

Our aforementioned estimation framework for the causal inference under the kinked bunching

relies on the estimation of counterfactual density hct() and outcome yct() distributions under the

linear policy. In this section, we elaborate on the empirical details to estimate these counterfactuals.

One important and common feature of kink settings is that all agents (both shifters and bunch-

ers) to the one side of the policy threshold respond to the kinked policy. This is in contrast to the

assumption under notch settings that the adjustment only happens within a certain range (ma-

nipulation region) around the threshold (see Diamond and Persson, 2017).13 To account for the

responses by shifters, we propose a new method to recover the counterfactual density distribu-

tion hct() together with the marginal buncher’s response ∆z∗, and the counterfactual distribution of

yct().

Our estimation method of the counterfactual density distribution has several desired proper-

ties over the conventional approach used in the bunching literature. First, it automatically satisfies

the integration constraint that the number of agents under the counterfactual and that under the

observed distribution should be the same. Second, it allows for the fact that the observed and

counterfactual density distribution for shifters can be non-parallel because the adjustment by shift-

ing agents is non-uniform, i.e., z− zct = zct( z∗
z∗+∆z∗ − 1). This relaxes the assumption made by

Chetty et al. (2011) that the counterfactual density distribution is a parallel upward shifting of the

observed one within the range with z > z∗. Last, our empirical strategy is model-free and can be

applied to most kink settings. The estimation of counterfactual density and outcomes distributions

do not require or depend on modeling assumptions, except Assumption 1 which states that agents’

choice of z depends on individual heterogeneity (n) and the tax/co-payment rate (D = 0/1) and

they appear in the form of multiplication. Assumption 1 is valid in most bunching settings.

13In fact, there are also interior responses in the standard notch design when there is both level
and slope changes of incentives around the threshold. For example, Kleven and Waseem (2013),
Kleven (2016). However, such interior responses are largely ignored in the practical applications
of notched designs. As pointed out in Kleven (2016), interior responses are larger for kinks than
for notches because in real life changes of marginal tax rates are typically larger for the former
than for the latter. Chetty el al. (2011) deals with the interior responses under kink settings, by
assuming that the counterfactual density distribution is a parallel upward shifting of the observed
one in the region with z > z∗.
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3.1 Estimating Counterfactual Density Distribution

We start with the strategy to recover the counterfactual density distribution hct(z), which can be

applied to any kinked settings. As shown in Equation (6), agents’ responses to the kinked policy

can be summarized as: (i) alwaysr-takers with zct ≤ z∗ remain unchanged, i.e., z = zct ≤ z∗; (ii)

bunchers with zct ∈ (z∗,z∗+∆z∗] bunch at the threshold, i.e., z = z∗ < zct ; (iii)shifters with zct >

z∗+∆z∗ reduce their value but do not bunch at the threshold, i.e., z = zct × z∗
z∗+∆z∗ > z∗.

Figure 3 illustrates the observed density distribution of z under the kinked policy (the solid

curve) and the counterfactual density distribution under the linear case (the dashed curve). First,

to the right of the threshold, it is the distribution of always-takers. As their behaviors remain

unchanged in response to the kinked policy, the observed and counterfactual density distributions

overlap. Second, agents with zct ∈ (z∗,z∗ +∆z∗] are the bunching agents and they move to the

threshold z∗ in response to the kinked policy, generating the bunching mass observed at z∗ in

Figure 3. Third, agents with zct > z∗ + ∆z∗ are the shifting agents and they reduce their z in

response to the kinked policy but stay above z∗ (i.e., stay in the interior of the upper bracket).

These interior responses are represented by the leftward shift of the density distribution above z∗.

Figure 3: Change in the Density Distribution

To recover the counterfactual density distribution hct() from the observed density distribution

h(), we design a two-step estimation framework. First, we move shifters back to their counterfac-

tual locations, which leads to the estimation of hct(z) within the region (z∗+∆z∗,∞) for shifters.
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Then, we extrapolate hct() for bunching agents using the information of hct() for shifters and

always-takers, (as hct = h() in the region [zmin,z∗] for always-takers). Specifically, it is imple-

mented by the following algorithm.

First, given the observed location z and an initial guess ∆̂z∗
initial

for shifting agents, we infer

the counterfactual choice zct,initial based on the following relation derived from equation (6):

zct,initial =


z if z < z∗−u1

z z∗+∆̂z∗
initial

z∗ if z > z∗+u2

(17)

where [z∗− u1,z∗+ u2] is the bunching region with diffuse, in which u1 = u2 = 0 under sharping

bunching. The inferred zct,initial for shifters forms the counterfactual density distribution hct,initial (z) ,∀z∈
((z∗+u2)

z∗+∆̂z∗
initial

z∗ ,∞) ,14 whereas the observed density distribution for always-takers is the same

as counterfactual density distribution, i.e., hct,initial (z) = h(z) ,∀z ∈ (zmin,z∗−u1).

Next, we obtain the counterfactual density for bunching agents based on the assumption

that the counterfactual density distribution is smooth. Specifically, we use the standard approach

in the bunching literature to fit a flexible polynomial to the counterfactual distribution for the

always-takers and shifters outside the region [(z∗−u1) ,(z∗+ u2)
z∗+∆̂z∗

initial

z∗ ], and extrapolate the

fitted distribution inside the region. Empirically, we group agents into bins indexed by j, and

estimate the following regression:

hct,initial
j =

p

∑
k=0

βk(z
ct,initial
j )k + ε j (18)

if zct,initial
j < (z∗−u1) or zct,initial

j > (z∗+u2)
z∗+ ∆̂z∗

initial

z∗
,

where hct,initial
j is the number of agents in bin j; zct,initial

j is the inferred z level in bin j based on the

initial guess ∆̂z∗
initial

; and p is the polynomial order. The counterfactual bin counts in the region

14When we relocate shifters back to their original location, we reshape observed density
distribution h(z),∀z ∈ (z∗ + u2,∞) into h(zct z∗

z∗+∆z∗,initial ) ≡ hct,initial(zct,initial),∀zct,initial ∈ ((z∗ +

u2)
z∗+∆̂z∗

initial

z∗ ,∞).
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[(z∗−u1) ,(z∗+u2)
z∗+∆̂z∗

initial

z∗ ] are obtained as the predicted values from Equation (18).

After recovering the hct,initial (z) for the full range of z, excess bunching (with diffusion) at

the threshold can then be computed as15

B̂initial =
∫ z∗

z∗−u1

(
h(z)−hct,initial(z)

)
dz+

∫ z∗+u2

z∗+1

(
h(z)−hshi f t(z)

)
dz, (19)

where hshi f t(z) denotes the density of shifters under the kinked policy. Note that to the right of

the bunching region, the observed density distribution contains only shifting agents, and hence,

hshi f t(z) = h(z) for z > z∗+u2. However, within the diffuse region (z∗,z∗+u2], the observed post-

kink density distribution contains both shifters and diffused bunchers. Assuming that hshi f t(z) is

smooth, we then use the observed distribution h(z) in the region z > z∗ + u2 to extrapolate the

distribution of shifting agents in the diffusion region (z∗,z∗+u2].16

Third, we compute the updated ∆̂z∗
updated

based on the following relation:

B̂initial =
∫ z∗+∆̂z∗

updated

z∗+1
hct,initial(z)dz, (20)

and check whether ∆̂z∗
updated

equals ∆̂z∗
initial

. If ∆̂z∗
updated

> ∆̂z∗
initial

, we increase the value of

∆̂z∗
initial

and repeat the above steps until we have ∆̂z∗
updated

= ∆̂z∗
initial

. Following the above pro-

cess, we obtain the estimated marginal adjustment ∆̂z∗ and the counterfactual density distribution

ĥct(z).

In addition, following the bunching literature, given the kinked policy and estimated bunch-

ing response ∆̂z∗, we can calibrate e using the equation f (D=1|e)
f (D=0|e) =

z∗+∆̂z∗
z∗ . For example, in Saez

(2010), the equivalent equation would be (1−t)e

(1−t−∆t)e =
z∗+∆̂z∗

z∗ .

Four remarks about our proposed method are worth noting. First, our estimation does not

depend on the initial guess value ∆̂z∗
initial

, as it converges to the true unique ∆z∗. The reason is as

follows. Suppose our initial guess ∆̂z∗
initial

< ∆z∗ (the true value). This means z∗+∆̂z∗
initial

z∗ < z∗+∆z∗
z∗ ,

and hence, the elasticity êinitial < e. In other words, our guessed ∆̂z∗
initial

would be consistent with

15The excess bunching at the threshold under the sharp bunching is B̂initial = h(z∗)−hct,initial(z∗).
16Alternatively, we can use the inferred hct,initial(z) and the relation that z = zct,initial z∗

z∗+∆̂z∗
initial

to obtain h1,shi f t(z) for z ∈ (z∗,z∗+u2].
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a lower level of bunching around the cutoff, compared to the true value, i.e., B̂initial < B. However,

as B is fixed17 and B > B̂initial , our updated value ∆̂z∗
updared

> ∆̂z∗
initial

, indicating our initial guess

is too low and we need to increase the value of our initial guess. The self-correcting feature is

important to our estimation process and leads to the convergence of the estimated value ∆̂z∗.

Second and importantly, our method accommodates the fact that shifters further away from

the policy threshold have less adjustment in z, and therefore, the observed and the counterfactual

density distributions to the right of the threshold may not be parallel. Our approach relaxes the

parallel shifting assumption by Chetty et al. (2011).18

Third, by definition, our method satisfies the integration constraint that the number of agents

under the observed and counterfactual density distributions should be the same, as our approach

moves the exact shifting agents back to their original locations.

Fourth, our method does not depend on the assumption of the counterfactual linear policy.

In the main text, we assume the counterfactual is a linear policy with a low tax/co-payment rate.

However, if we assume the counterfactual is a linear high tax/co-payment rate, the analysis is still

valid with corresponding adjustments. Details are shown in Appendix B. Moreover, regardless of

which counterfactual policy we assume, the estimated relation between z(D = 1|e) and z(D = 0|e)
and hence the elasticity remains the same.

3.2 Estimating Counterfactual Outcome Distribution and Parameters

In subsection 2.2, we lay out the framework to estimate causal effects under the kink setting, which

incorporates the fact that all agents above the threshold have incentives to adjust their behaviors.

Now, we discuss empirical details, in particular, the procedure to recover the counterfactual out-

come distribution yct (), which is a crucial step to identify the causal effects of the kinked policy.

Specifically, first, given that always-takers do not respond to the kinked policy (zct = z) and

17Under sharp bunching, B = h(z∗)− hct(z∗), where hct(z∗) mainly depends on the shape of

hct(z) = h(z)∀z < z∗. Therefore, B does not depend much on the initial guess of ∆̂z∗
initial

.
18Chetty et al. (2011) estimate a regression of the following form:

c j

(
1+ I{z j>z∗+u2}

B̂
∑

∞
z∗+u2

c j

)
= β0 +

p

∑
k=1

βk(z j)
k +

z∗+u2

∑
i=z∗−u1

γiI
[
z j = i

]
+ ε j.

The term I{z j>z∗+u2}
B̂

∑
∞

z∗+u2
c j is a parallel upward shift of observed density, which captures the

change in z for shifters such that the integration constraint is met.
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pay the same amount of money (or tax) T , their observed outcomes are the same as their coun-

terfactual outcomes, that is, yct
n = yn,∀n ∈ always-takers. Therefore, the counterfactual outcome

distribution for always-takers is yct(zct) = y(z),∀zct < z∗.

Second, for each shifter, in the previous subsection, we have recovered marginal bunchers’

responses ∆z∗ and each shifter’s counterfactual location zct = z z∗+∆z∗
z∗ ,∀z > z∗ which forms the

counterfactual density distribution. To make sure that we are comparing the same shifter under

the counterfactual and the kinked policies, we locate shifters back to their initial location, which

generates the auxiliary outcome distribution under kinked policy yr(zct),∀zct > z∗+∆z∗.19 It rep-

resents each shifter’s value of y under the kinked policy, including the direct impacts from changes

in z and the impacts from changes in T , while excluding the relocation impacts (as we have located

shifters back to their counterfactual locations). As shown in Equations (9), there would be both

level and slope changes when comparing the counterfactual outcome distribution yct(zct) with the

auxiliary outcome distribution under the kinked policy yr(zct). Moreover, if we extrapolate the

obtained auxiliary distribution yr(zct) to the cutoff z∗, then the slope and the level change at z∗

could be used to calibrate the sufficient statistics µ,λ as shown in Equations (10, 11).20 These

parameters represent how changes in z directly impact y and how changes in T (due to change in z

and the kinked policy) impact y.

Empirically, we jointly estimate the counterfactual outcome distribution yct and the slope and

level changes. Specifically, we use the observed (also the counterfactual) outcome distribution for

always-takers (yct(zct) = y(z),∀zct < z∗− u1) and the obtained auxiliary outcome distribution for

shifters (yr(zct),∀zct > (z∗+u2)
z∗+∆z∗

z∗ ) to fit a flexible polynomial distribution, allowing intercept

and slope changes at the threshold. 21

19Note yr(zct)≡ y(zct z∗
z∗+∆z∗ ),∀zct > z∗+∆z∗.

20We could also check slope and level changes at other locations, apart from z∗, by plugging
zct with the corresponding value of alternative locations. It does not affect the calibrated value of
parameters µ,λ .

21In notch setting with just level change of incentives at the threshold, Diamond and Persson
(2017) include the term I

[
z0

j ≥ z∗
]

in their estimation equation to capture the payoff (change in
outcome) of just passing the threshold in a world without adjustment in z. In kinked settings,
even if agents do not manipulate/adjust their z, the kinked policy would lead to slope change at
the threshold. Further, agents do adjust their value of z, leading to level changes on outcome y.
Therefore, even if we locate shifters back to their initial location, the auxiliary outcome distribution
under the kinked policy would still indicate slope and level changes at the threshold, compared
to the counterfactual (observed) distribution under the linear policy to the left of the threshold.
Therefore, we include both the level and slope changes at the threshold, to capture change in
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The estimation equation for the counterfactual outcome distribution is as follows:

yreg
j =

q

∑
k=0

αk(zct
j )

k +a0I
[
zct

j > z∗
]
+a1I

[
zct

j > z∗
]

zct
j + ε j (21)

if zct
j < (z∗−u1) or zct

j > (z∗+u2)
z∗+∆z∗

z∗

where j indicates the bin; and q is the polynomial order; yreg
j = y j = yct

j for always-takers with

zct
j < (z∗−u1), and yreg

j = yr
j for shifters with zct

j > (z∗+u2)
z∗+∆z∗

z∗ .

Further, Combined, we can calibrate structural parameters µ,λ

Note the estimated coefficients â0 and â1 reflect the level change and the slope change at

the threshold respectively. a0 captures the level change between the auxiliary outcome distribu-

tion and the counterfactual outcome distribution of shifters, while a1 captures the corresponding

slope change. Hence, following Equations (10, 11), we calibrate the values of λ ,µ , based on the

following equations:

a0 = µ
(z∗+∆z∗

z∗
−1
)
+λ (t +∆t)z∗

( z∗

z∗+∆z∗
−1
)

a1 = λ

(
(t +∆t)

z∗

z∗+∆z∗
− t
)

With two equations and two unknowns, we can calibrate λ ,µ .

Relying on the assumption that the relationship between outcome y and z would be smooth

under the counterfactual policy, we obtain the counterfactual outcome distribution from Equation

(21) as ŷct
j = ∑

q
k=0 α̂k(zct

j )
k.

Meanwhile, the treated outcome for shifters yshi f t
j in [z∗,z∗+u2) is unobserved with diffused

bunching, given that this region contains both shifters and diffused bunchers under the kinked

policy. However, for the range z > z∗+u2, there is only shifters under the kinked policy, therefore,

yshi f t
j = y j for z > z∗ + u2. Therefore, we fit a flexible polynomial to the observed distribution

of y j for shifters in the range z > z∗+ u2 and extrapolate the fitted distribution to obtain yshi f t
j in

(z∗,z∗ + u2], with the assumption that the relationship between observed outcome yshi f ter and z

under the kinked policy is smooth to the left of z∗+u2.22

outcomes for shifters.
22Alternatively, we can use the inferred ŷct

j , the estimated â0, â1, the counterfactual density ĥct
j
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Given that we have recovered the counterfactual density distribution in Equation (18), the

counterfactual outcome distribution in Equation (21), and the density and outcome distributions of

shifters within the diffuse bunching region, we can estimate the impacts of the kinked policy on

bunchers and shifters following Equations (8) and (14).

Remark 8 When comparing our approach with regression kinked design (RKD), there are

certain similarities and some differences as well. First, RKD does not allow adjustment of z around

the threshold, indicating that agents’ heterogeneity is smooth around the threshold. In our estima-

tion process, we mimic this intuition by locating shifters back to the counterfactual location of z.

Second, in RKD, there is no level change but there is a slope change at the threshold due to the

kinked incentives T (e.g., maximum claim on unemployment insurance). That is, even if z does

not change, changes in the slope of T at the threshold would lead to a change in the slope of Y at

the threshold. Therefore, RKD allows us to estimate the impact of T on Y (i.e., λ in our setup).

However, in bunching, even if we locate shifters back to the counterfactual location zct , the fact

that their z did change would lead to changes in Y as well. Therefore, on top of the slope change

as in RKD, we would have a level change due to (i) direct impact from ∆z on y and (ii) impact

from ∆T (due to ∆z) on y. Therefore, we would have both slope and level changes at the threshold.

It is more complex, but it also adds more calculation power in the sense that we can use the level

change to identify the direct impact of z on y (i.e., µ in our setup), which is non-identified under

RKD as there is no change in z to start with. In terms of policy suggestions, apart from evaluating

where to set the cutoff (which is also answered by RKD), we can also evaluate to what extent we

should set the difference in marginal incentives below/above the threshold. It enables us to search

for the optimal policies within a large scope of choices.

3.3 Discussion on Exclusion Restriction

Recall that in Section 2, we defined the average treatment effects of the policy on bunchers and

shifters and showed that estimating the treatment effects requires us to recover the counterfactual

density and outcome distributions. Subsections 3.1 & 3.2 demonstrate the steps for estimating the

counterfactual distributions, under the assumption that the counterfactual distributions are smooth.

However, one might be concerned whether the counterfactual distributions are correctly es-

timated, and if not, it would cast bias to the estimated treatment effects. Blomquist et al. (2021)

and the relation that z = zct z∗
z∗+∆z∗ to calculate yshi f t

j for shifters with z ∈ (z∗,z∗+u2].

25



pointed out that when the distribution of agent heterogeneity is unrestricted, the estimated coun-

terfactual density distribution (following a parametric method) could be of any form and thus the

estimated extent of bunching is not informative of the policy response. Thus, Blomquist et al.

(2021) suggest exploring cross-sectional or over-time variation from the policy threshold to help

discipline the estimated counterfactual density distribution.

We address the concern in two ways. First, following Blomquist et al. (2021), we suggest

exploring the density distribution of the same population before the focal policy threshold starts

(i.e., “over-time variation”) or the density distribution of another subset of the population which

is not subject to the same threshold (i.e., “cross-sectional variation”) to infer whether the coun-

terfactual distribution is correctly specified. We can check whether the distribution during these

placebo tests follows a similar pattern (or shape) as the estimated counterfactual distribution of the

focal group. Alternatively, we can use the distribution of these placebo groups (i.e., the focal group

before policy starts, or, other groups which are not subject to the same policy) as the counterfactual

distributions.

Second, we would like to clarify that Blomquist et al. (2021)’s critique of the lack of in-

formation on the shape of the counterfactual distribution using a single kink policy is less severe

in our setting because our method does not require assumptions on the functional form of the

counterfactual density distribution on shifters and bunchers. We infer the counterfactual distribu-

tion using the non-parametric method by directly calculating how much each shifter has adjusted

his/her value of z, which automatically forms the counterfactual density distribution. The only

place we used parametric assumption is when inferring the counterfactual density distribution of

bunchers (the middle part), for which we assume that the counterfactual distribution is smooth and

can be extrapolated from the left and the right part of the distribution. In short, our method for

estimating counterfactual density does not require a parametric assumption on the whole counter-

factual distribution; it uses the parametric assumption only for the middle part of the counterfactual

distribution. Therefore, the potential bias is supposed to be less server. Nevertheless, we suggest

following Blomquist et al. (2021) by exploring the cross-sectional or over-time variation from the

policy threshold. If one finds the counterfactual density and outcome distributions are correctly

specified and there is no discontinuity at the kink point, then any difference between the observed

and the counterfactual distribution is driven by agents’ response to the kinked policy. Therefore, it

alleviates the concern that the the estimated treatment effect is due to other reasons, rather than the

policy response.
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4 Extensions

In this section, we discuss a number of extensions to our baseline framework presented in the

previous sections, including the rounding effects, unresponsive to the kinked policy by some agents

due to optimization frictions (denoted as stayers), the heterogeneity in the structural parameter e,

the relabeling behavior of z. In each scenario, we discuss the potential biases with our baseline

analysis discussed in the previous sections and the remedy strategies.

4.1 Reference Points

When the policy threshold is a reference point, the excess bunching at such threshold may also

capture the reference point effect, which may lead to over-estimated responses compared to the

true values. In other words, with one moment (estimated excess bunching mass), there are two

underlying structural parameters (i.e., the reference point effect and the policy effect). To isolate

the policy effect from the reference point effect, we need an additional empirical moment to jointly

identify these two structural parameters. One commonly used approach in the bunching literature

is to exploit the excess bunching at similar reference points that are not thresholds to control for

the bunching due to the reference point effect at the threshold (e.g., Chetty et al. 2011; Kleven

& Waseem 2013; Best & Kleven 2016) with the assumption that reference point effects are same

across similar reference points.23

Following this literature, we revise the density distribution estimation in Equation (18) by

including a set of reference point fixed effects to contain the potential bias from the reference point

effects:

hct,initial
j =

p

∑
k=0

βk(z
ct,initial
j − z∗)k + ∑

r∈R
γrI
[z j

r
∈ N

]
+ ε j

if zct,initial
j < (z∗−u1) or zct,initial

j > (z∗+u2)
z∗+ ∆̂z∗

initial

z∗

23In addition, they often assume an equal degree of excess bunching at the same reference point
under the treated and counterfactual states. For instance, Chetty et al. (2011) adjust for the interior
responses of shifting agents by allowing for an upward shift in the density distribution, which
is equivalent to assuming that there are the same degree of excess bunching at reference points
between the treated and counterfactual states. We consider the same assumption in all applications.
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where N is the set of reference points; and R is a vector of multiples that capture similar ref-

erence points. The counterfactual density distribution is ĥct,initial
j = ∑

p
k=0 β̂k(z

ct,initial
j − z∗)k +

∑
r∈R

γ̂rI
[

zct,initial
j

r ∈ N
]

.

To address the concern that the reference point effects may generate potential bias in the

estimation of the outcome distribution, we take a similar remedy approach. Specifically, we revise

the estimation framework of the outcome distribution (21) by including a set of reference point

fixed effects:

yreg
j =

q

∑
k=0

αk(zct
j − z∗)k +a0I

[
zct

j ≤ z∗
]
+a1I

[
zct

j ≤ z∗
]
(zct

j − z∗)

+ ∑
r∈R

ρrI
[z j

r
∈ N

]
+ ε j

if zct
j < (z∗−u1) or zct

j > (z∗+u2)
z∗+∆z∗

z∗

The counterfactual outcome distribution is given as ŷct
j = ∑

q
k=0 α̂k(zct

j − z∗)k + ∑
r∈R

ρ̂rI
[

zct
j
r ∈ N

]
.

4.2 Stayers

Our framework as mentioned earlier implicitly assumes that all agents behave according to the

optimal equation (6) without friction. However, as pointed out in the bunching literature (e.g.,

Kleven and Waseem 2013), optimization frictions (such as adjustment costs and inattention) may

induce agents to stay at their original locations even though they would adjust z in the absence

of frictions. We denote these agents as stayers and extend our estimation approach to incorporate

stayers in calculating causal effects.

Specifically, bunching studies often introduce an additional parameter to characterize the ad-

justment costs in the presence of optimization frictions (explaining the gap between the bunching

sizes with and without attenuation from frictions). It then uses additional empirical moments to

uncover the parameter corresponding to optimization frictions and to estimate the underlying struc-

tural parameter that governs agents’ behavior without frictions (e.g., Chetty et al. 2010; Kleven

and Waseem 2013; Gelber et al. 2014; Manoli et al. 2016). For example, in the notch design with

strictly dominated regions (i.e., the upward tax notches in the labor-leisure decision), Kleven and

Waseem (2013) develop the approach that uses the observed density in the strictly dominated re-
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gion to estimate the share of stayers (with the assumption of a constant share within this region).24

However, the change in the marginal incentives across the policy threshold in the kink setting

offers only one empirical moment –the size of bunching – for estimation. Instead, kink studies of-

ten construct alternative additional moments generated by either multiple thresholds with different-

sized kinks or the changes in the size of a kink at a given threshold over time to jointly identify

the structural parameters of interest and the friction parameter, with the assumptions that friction

and elasticity parameters are the same at multiple thresholds or over time (e.g., Chetty et al. 2010,

2011; Gelber et al 2014). These approaches also apply to our setup.

In addition, we propose a new approach to estimate the share of stayers by exploiting changes

in the curvature of density distribution under the treated and the counterfactual states. Specifically,

we follow the practice of Kleven and Waseem (2013) and others in assuming a fixed share of

stayers α at each bin of z. With the introduction of the kinked policy, (1−α) share of shifting

agents relocates from zct to z (with the relation between z and zct defined in Equation 6), and α

share of agents stay unchanged (due to optimization frictions). Such relocation leads to a change

of the density distribution from h0(z) to h1(z) as follows:

h1(z) =



hct(z) , if z < z∗

∫ z∗+∆z∗
z∗ (1−α)hct(z)dz+hct(z∗) , if z = z∗

(1−α)hct(z× z∗+∆z∗
z∗ )+αhct(z) , if z > z∗.

(22)

Specifically, for each bin j of shifters (i.e., z > z∗), it contains two groups of agents: α share of

stayers and (1−α) share of relocated shifting agents. For bunchers, the density at the threshold

contains those bunching from the initial range of (z∗,z∗+∆z∗) and those with the initial value of

z∗. Always takers remain unchanged.

We perform the following procedure to estimate the share of stayers and counterfactual den-

sity and outcome distributions. For a given guess of the value of α and the shape of a polynomial

function of hct(), we use equation (22) to obtain h() to fit the observed density distribution under

the kinked policy. We then select the share of stayers and estimated polynomial coefficients that

24More generally, the downward tax notches and notches in contexts other than the labor-leisure
decision do not always contain strictly dominated regions. In such cases, studies (see, for example,
Best et al 2015; Manoli and Weber 2016) recover the constant share of stayers from a very narrow
range above/below the threshold by ruling out extreme preferences.
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minimize the mean squared error, 25 which allows us to obtain the estimated α̂ and ˆ∆z∗. Note

changes in the curvature of the density distribution are used to capture the additional parameter α .

Note that the counterfactual outcome values for stayers and shifters at the same value of z

might be different. Without loss of generality, assume the relative difference is captured by β . For

a given guess of the value of β and the shape of a polynomial function of yct(), using the estimated

∆z∗ and equations (10, 11), we fit the observed outcome distribution under the kinked policy. We

then select the relative difference in counterfactual outcome between stayers and shifters and the

estimated polynomial coefficients that minimize the mean squared error, which allows us to obtain

the estimated β , the counterfactual outcome distribution. Meanwhile, the slope and level change

at the threshold from the regression (with some adjustments) are used to calibrate the parameters

µ,λ . Note that, similar to the density estimation part, we use changes in the curvature of the

outcome distribution to capture the additional parameter β .

4.3 Heterogeneity in Structural Parameter

In our benchmark analysis, we assume homogeneous preference across agents; that is, a single

structural elasticity e across agents. Given that agents may have different responses to the policy,

we extend our estimation framework to account for heterogeneity in e.

Specifically, consider a joint distribution of innate agents’ innate type φ and response elas-

ticity e, denoted as f (φ ,e), which determines a counterfactual density distribution h̃ct (z,e) under

the linear policy and hct (z) ≡
∫

e h̃ct (z,e)de. For each value of e, behavior responses can be char-

acterized as in the benchmark model, in which the marginal bunching agents’ adjustment ∆z∗e is

increasing in e. In the bunching literature with homogeneous preference, the structural parameter

e is inferred from the observed excess bunching mass B in the data with one empirical moment

linking B to e as derived in Equation 4. However, when there is heterogeneity in e, Equation 4 be-

25The intuition is as follows. Suppose in reality there are stayers (α > 0). If we impose α = 0,
we would have a maximum achievable prediction power. However, if we allow α > 0, we would
have a higher prediction power for the density distribution, by capturing the curvature change.
To further help the understanding, consider a log transformation x = lnz. Note xct = x + cst,
where cst = lnz∗+∆z∗z∗. We draw the density distribution of x. When α = 0, we have h̃ct(x) =
h̃
(
x− cst

)
. However, when α > 0, the above equality no longer holds, that is, h̃ct and h̃ are no

longer sharing the same functional transformation. Therefore, if in reality α > 0 but we impose
α = 0, our prediction power would be lower. Hence, information about changes in the functional
form captures α .
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comes B =
∫

e
∫ z∗−1

z∗−∆z∗e
h̃0(z,e)dzde. Hence, linking one empirical moment B to multiple parameters

e causes the empirical estimation to fall short of the identification freedom and power.

If the dimensions of heterogeneity are known, we can split the whole sample into subsamples

according to these determinants, as conducted by Best et al. (2015b). This allows the unbiased

estimation within subsamples with relatively homogeneous preferences. However, without the

knowledge of heterogeneity, one approach commonly used in the bunching literature to address

the freedom issue in the presence of preference heterogeneity is to estimate the average response

E [∆z∗e ]. Specifically, using the procedure proposed in section 3.1 and replacing ∆z∗ by E [∆z∗e ],

we can estimate the counterfactual density distribution together with the average response E [∆z∗e ]

level, and then estimate the auxiliary outcome distribution (by locating agents back to their coun-

terfactual location) and the counterfactual outcome distribution using the procedure discussed in

section 3.2 and hence, the treatment impacts.

However, the estimated elasticity and treatment effects essentially represent the elasticity and

treatment effects at the average response, instead of the average elasticity and treatment effects,

creating potential aggregation biases. In the following, we use a simple example to discuss the ag-

gregation bias from heterogeneous preference in the kink design and how it affects our estimations

of the counterfactual density distribution and the policy effects.26

Specifically, consider a case with two groups of agents at each level of z, denoted as L,S.

Their shares are denoted as αL,αS, with αL +αS = 1. They hold different structural parameters;

without loss of generality, we assume eL > eS. A larger e implies a larger bunching response,

i.e., ∆z∗,L > ∆z∗,S. We first discuss the potential biases in the estimation of counterfactual density

distribution hct (z) and the marginal buncher’s response ∆z∗ with the heterogeneity in e.

Consider shifters with a value zx < z∗. Suppose we ignore the heterogeneity, we obtain the

estimated average response level ∆̃z∗ ≡ Ê [∆z∗e ] from the excess mass B and hence would have

z̃ct
x = zx

(
z∗+∆̃z∗

z∗

)
. Therefore, the estimated counterfactual density at z̃ct

x is given by ĥct(z̃ct
x ) =

h(z̃ct
x

z∗

z∗+∆̃z∗
)= h(zx)=αLhct(zct,L

x )+αShct(zct,S
x ), where zct,L

x = zx

(
z∗+∆z∗,L

z∗

)
and zct,S

x = zx

(
z∗+∆z∗,S

z∗

)
.

However, the true counterfactual density at z̃ct
x should be hct(z̃ct

x )=αLhct
(

zx(
z∗+∆̃z∗

z∗ )
)
+αShct

(
zx(

z∗+∆̃z∗
z∗ )

)
.

Hence, using the average response ∆̃z∗ generates a bias in the estimation of counterfactual density

hct at z̃ct
x as

26In the notch design, the literature generally considers such aggregation bias to be small
(Kleven, 2016). For example, Kleven and Waseem (2013) discuss the bound of such aggregation
bias in the case of notch design and Best et al. (2015b) conduct a rich set of subsample analyses
and show that such aggregation bias is very small under the notch design.
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Aggregation Bias in hct (z̃ct
x
)

= ĥct(z̃ct
x )−hct(z̃ct

x )

= α
L [hct(zct,L

x )−hct(z̃ct
x )
]
−α

S
[
hct(zct,S

x )−hct(z̃ct
x )
]
.

The degree of the bias in the density estimation depends on three factors: (1) the slope of the

counterfactual density hct (z), which determines the number of agents at zct,L
x , z̃ct

x and zct,S
x under the

counterfactual linear state; (2) the relative size of heterogeneous groups in the sample: αL and αS;

(3) the degree of heterogeneity eL,eS, which determines ∆z∗,S and ∆z∗,L. When the slope of the

counterfactual density hct (z) of the shifters is relatively small (i.e., hct(zct,L
x )≈ hct(z̃ct

x )≈ hct(zct,S
x )

∀n ∈ shi f ters), the bias in the density estimation can be ignored. In this scenario, the estimated

average response ∆̃z∗ is the weighted average of each heterogeneous group’s response, with the

relative share of each group as the weights, i.e., ∆̃z∗ = αS∆z∗,S+αL∆z∗,L
αS+αL . 27

Next, we consider the potential bias in the average policy effects from the heterogeneity in

e. Note that a crucial step in our proposed estimation framework of the policy effects is to use

the observed outcome distribution of shifters to estimate an auxiliary outcome distribution yr(z),

which relies on the estimation of ∆z∗. When there is heterogeneity in the structural parameter e

and yet we ignore the heterogeneity by adjusting each shifter’s location using the estimated average

response level ∆̃z∗ (i.e., zct = z
(

z∗+∆̃z∗
z∗ )

)
, there would be biases in the estimation of the auxiliary

27To see this, the excess bunching is composed of bunching agents from both L and S group: i.e.,
B = αL ∫ z∗+∆z∗,L

z∗ hct(z)dz+αS ∫ z∗+∆z∗,S
z∗ hct(z)dz. Given the estimated counterfactual density ĥct(z)

and excess bunching B̂ = B, we estimate the average response ∆z∗ using B̂ =
∫ z∗+∆̃z∗

z∗ ĥct(z)dz.

Thus, we have αS ∫ z∗+∆̃z∗
z∗+∆z∗,S hct(z)dz−αL ∫ z∗+∆z∗,L

z∗+∆̃z∗
hct(z)dz = 0. When hct (z) is approximately lo-

cally linear, the above equation can be approximated as:

α
S
β

S
(

∆̃z∗−∆z∗,S
)
−α

L
β

L
(

∆z∗,L − ∆̃z∗
)

=
(

α
S
β

S +α
L
β

L
)

∆̃z∗−
(

α
S
β

S
∆z∗,S +α

L
β

L
∆z∗,L

)
= 0

where β S = hct(z∗+∆z∗,S)+hct(z∗+∆̃z∗)
2 and β L = hct(z∗+∆z∗,L)+hct(z∗+∆̃z

∗
)

2 . Hence, the estimated average

response ∆̃z
∗
= αSβ S∆z∗,S+αLβ L∆z∗,L

αSβ S+αLβ L . If the slope of the counterfactual density hct (z) to the left of z∗

is relatively small, β S= β
L = hct(z∗+ ∆̃z∗), the estimated average response is the weighted average

of each heterogeneous group’s response, with the relative share of each group as the weights, i.e.,
∆̃z∗ = αS∆z∗,S+αL∆z∗,L

αS+αL .
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outcome distribution and policy impacts.

Similarly, consider shifters with a value zx > z∗. Suppose we ignore heterogeneity in the

parameter e and adjust shifters at zx to their counterfactual locations using the estimated average

response ∆̃z∗, we have z̃ct
x = zx

(
z∗+∆̃z∗

z∗

)
. At the point z̃ct

x , the estimated auxiliary outcome distri-

bution would be

̂E [yr(z̃ct
x )] = y(z̃ct

x
z∗

z∗+ ∆̃z∗
) = y(zx) = α

LyL,r(zct,L
x )+α

SyS,r(zct,S
x )

where yL,r(zct,L
x ) denote the outcome under the kinked policy for shifters of group L whose coun-

terfactual values are zct,L
x = zx

z∗+∆z∗,L
z∗ ; and, vice versa for yS,r(zct,S

x ).

However, the true auxiliary outcome at z̃ct
x should be

E
[
yr|z̃ct

x
]
= α

LyL,r(zx
z∗+∆z∗

z∗
)+α

SyS,r(zx
z∗+∆z∗,S

z∗
).

Hence, using the average response ∆̃z∗ generates the bias in the estimation of yr at z̃ct
x as

Aggregation Bias in
[
yr|z̃ct

x
]

= ̂E [yr|z̃ct
x ]−E

[
yr|z̃ct

x
]

= α
L

(
yL,r(zx

z∗+∆z∗,L

z∗
)− yL,r(zx

z∗+ ∆̃z∗

z∗
)

)

+ α
S

(
yS,r(zx

z∗+∆z∗,S

z∗
)− yS,r(zx

z∗+ ∆̃z∗

z∗
)

)
.

Similarly, the degree of bias in the outcome estimation depends on: (1) the slope of the aux-

iliary outcome distribution yr (z), which determines the values at zct,L
x , z̃ct

x and zct,S
x ; (2) the share

of heterogeneous groups αS and αL; (3) the degree of heterogeneity which determines ∆z∗,L and

∆z∗,S; and (4) the bias in the counterfactual density estimation hct (z). When we have small ag-

gregation biases in the estimation of counterfactual density distribution and the auxiliary outcome

distribution holds a small slope, we can obtain a good approximation of the outcome distribution

and of the average treatment effects.

In addition, we propose another approach to address the aforementioned aggregation bias

with an alternative identifying assumption. Specifically, consider a logarithm transformation of z,

denoted as r ≡ ln(z). When the density distribution of x and the outcome distribution of y against r
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are linear,28 we can obtain unbiased estimates of counterfactual density and outcome distributions,

and thus the unbiased estimate of average treatment effects in the presence of heterogeneity. The

reasoning is as follows.

With the logarithm transformation, each shifter’s adjustment of r in response to the introduc-

tion of kinked policy becomes a constant, i.e., r−rct = ln z∗
z∗+∆z∗ , which leads to a parallel-rightward

shift of the density curve for the region to the left of cutoff r∗ ≡ lnz∗. 29In other words, the post-

kink density distribution has the same slope as the counterfactual one, but with different intercepts.

We use the same illustrative example: two groups of agents at each level of r, with the shares and

structural parameters being αL,αS and eL,eS, respectively. For shifters with a value rx > r∗, we

have:

h(rx) = α
Lhct(rct,L

x )+α
Shct(rct,S

x )

= α
Lhct(rx −∆r∗,L)+α

Shct(rx −∆r∗S)

= hct(rx)−
dh
dr

× (αL
∆r∗,L +α

S
∆r∗,S)

Given that the amount −dh
dr × (αL∆r∗,L +αS∆r∗,S) is a constant, the counterfactual density distri-

bution to the left of r∗ is also a downward shift of the observed one. Hence, using the observed

density distribution for shifters and for always-takers to fit a linear distribution and allowing an

intercept change at the threshold r∗, we can still recover an unbiased counterfactual density dis-

tribution hct(r) in the presence of heterogeneity. In addition, based on the value of change at the

threshold, we can recover the value of (αL∆r∗,L +αS∆r∗,S).

Similarly, when the outcome distribution of y against r is linear, under the kinked policy the

outcome distribution of shifters is a parallel shift of the counterfactual outcome distribution along

the x-axis. We then have:
28r is linear when z is exponentially distributed with a parameter within (0,1). In the data,

variables often follow such a pattern under which there are more numbers of small values and only
a few large values. One can plot the density of r ≡ lnz and check whether the density is close to
linear in the estimation region.

29In terms of notations, we use r here to represent the equivalent terms of lnz.
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y(rx) = α
Lyr,L(rct,L

x )+α
Syr,L(rct,S

x )

= α
Lyr,L(rx −∆r∗,Lx )+α

Syr,L(rx −∆r∗,Sx )

= yr(rx)−
dy
dr

× (αL
∆r∗,Lx +α

S
∆r∗,Sx )

where dy
dr is the slope of outcome distribution; and −dy

dr × (αL∆r∗,Lx + αS∆r∗,Sx ) is the constant

amount of outcome distribution shift for shifters. Given the observed outcome distribution for

always-takers, we can recover dy
dr . Given the estimated value of (αL∆r∗,Lx +αS∆r∗,Sx ) from the den-

sity distributions, we can obtain the value of dy
dr × (αL∆r∗,Lx +αS∆r∗,Sx ), which allows us to obtain

an unbiased estimate of the auxiliary outcome distribution for shifters. Combing the observed out-

come distribution of always-takers and the auxiliary outcome distribution of shifters, we can follow

the procedures in the main analysis to calibrate the structural parameters (µ,λ ) and estimate the

treatment effects. These estimates are unbiased because the auxiliary outcome distribution is unbi-

ased. Meanwhile, the corresponding identifying assumptions of the density distribution of r ≡ lnz

and the outcome distribution being linear are testable by directly examining the distribution figures.

To sum up, in the presence of heterogeneity in e, here are several potential solutions accord-

ing to the following scenarios:

1. If the dimensions of heterogeneity are known, we can split the whole sample into subsam-

ples according to these determinants, as conducted in Best et al. (2015b). This allows the

estimation within subsamples with relatively homogeneous preferences.

2. If density distribution h0(z) has a small slope and with small group heterogeneity, we can ob-

tain a good approximation of the average bunching response and achieve small aggregation

bias in the estimation of counterfactual density distribution. Furthermore, if the outcome

distribution also holds a small slope, we can obtain a good approximation of the average

treatment effects.

3. If the density and outcome distribution of the logarithm transformation of z is linear, we

can obtain an unbiased estimation of the counterfactual density distribution and the auxiliary

outcome distribution as well as the average treatment effects.
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4.4 Relabelling

Faced with monetary incentives, agents may engage in misreporting or other relabelling behavior,

causing their reported value of z to be potentially different from the real response. For example,

in the study of tax incidence on R&D investment, Chen et al. (2021) point out that relabelling is

an important channel in which firms adjust their R&D expenditure upwards, to benefit from tax

reduction. To investigate whether and how relabeling may affect our causal analysis, we extend

our proposed estimation approach to incorporate the relabelling behavior.

Agents’ optimal degree of relabelling is determined by the marginal cost (e.g., cost of cook-

ing the books and potential risk of being caught, related to the cost function) and the marginal

benefit of it (e.g., tax saving, related to the policy). We first consider a setting where agents share

the same cost function and then extend our framework to a more general situation where different

groups of agents may hold different cost functions (e.g. it is easier for self-employed to misreport

their income than wage-earners).

Specifically, we assume that relabeling cost depends on the absolute value and the relative

degree of relabeling following Chen et al. (2021). That is, we assume c× zrl × g(δ ), where c is

a fixed parameter; δ ≡ zrl−zrp

zrl summarizes the relabeling behavior by the agents; zrp,zrl are the

reported and real values of z respectively; and g′(δ )> 0,g′′(δ )> 0,g(0) = 0. Hence, the marginal

cost of an additional degree of relabelling is czrlg′(δ ).

Consider the counterfactual linear policy with a low tax/co-payment rate at t. The benefit

of relabelling is the money saved, i.e. (zrl,ct
n − zrp,ct

n )t ≡ δ ct
n zrl,ct

n t, therefore, the marginal benefit

of an additional degree of relabelling is zrl,ct
n t. Recall the marginal cost of an additional degree of

relabelling is czrl,ctg′(δ ct
n ). Agent n optimally chooses his/her degree of relabelling δ ct

n by setting

marginal benefit equalizing marginal cost, i.e., g′(δ ct
n ) = t

c , which implies δ ct
n = g′−1( t

c). Note

g′−1( t
c) is constant for all agents, therefore, we can rewrite it as δ ct = g′−1( t

c),∀n.

Next, consider the kinked policy, which sets a higher tax rate at t+∆t if zn > z∗ and leaves the

tax/co-payment rate unchanged at t if zn ≤ z∗. Similar to the analysis in Section 2, the introduction

of the kinked policy divides agents into three groups. First, agents with zrp,ct
n ≤ z∗ (i.e., always-

takers) face no change in marginal incentives and set zrp,1
n = zrp,ct

i ≤ z∗ and δ = δ ct = g′−1( t
c).

Second, agents with zrp,ct
n > z∗ + ∆z∗ (i.e., shifters) face a change in the marginal benefit and

adjust their optimal responses accordingly. Specifically, all shifters set δ = g′−1( t+∆t
c ). Also,

shifters change their reported value of z by a constant percentage with zrp
n

zrp,ct
n

= z∗

z∗+∆z∗
, where ∆z∗
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denotes the response in the reported value of z by the marginal bunching agent. Third, agents with

zrp,ct
n ∈ (z∗,z∗+∆z∗] (i.e., bunchers) also face a change in their marginal incentives but are subject

to a corner solution. However, these agents bunch at the cutoff zrp
n = z∗, and choose different

optimal degrees of relabelling δn, depending on how far away their counterfactual value zrp,ct
n is

from the cutoff z∗. Detailed proofs are shown in Appendix D??.

To summarize, the optimal reported value zrp
n , the optimal degree of relabeling δn and the

optimal real value zrl
n under the kinked policy are given as

zrp
n =



zrp,ct
n if zrp,ct

n ≤ z∗

z∗ if zrp,ct
n ∈ (z∗,z∗+∆z∗]

zrp,ct
n

z∗

z∗+∆z∗
if zrp,ct

n > z∗+∆z∗

(23)

δn =



g′−1( t
c) if zrp,ct

n ≤ z∗

(
0,g′−1( t+∆t

c )
]

if zrp,ct
n ∈ (z∗,z∗+∆z∗]

g′−1( t+∆t
c ) if zrp,ct

n > z∗+∆z∗

(24)

zrl
n = zrp

n
1

(1−δn)
=



zrl,ct
n if zrp,ct

n ≤ z∗

z∗ 1
(1−δn)

if zrp,ct
i ∈ (z∗,z∗+∆z∗]

z∗

z∗+∆z∗
1−g′−1( t

c )

1−g′−1( t+∆t
c )

zrl,ct
n if zrp,ct

n > z∗+∆z∗

(25)

The estimation of the treatment effect crucially depends on inferring the counterfactual den-

sity and outcome distributions, i.e., hct(z) and yct(z). Since all shifters adjust their reported (ob-

served) value of z by the same percentage, we can apply the same algorithm as in the baseline anal-

ysis to recover the counterfactual density distribution of the reported z and the reported marginal

buncher’s response. Hence, hct(z), ∆z∗ is unbiasedly estimated. Therefore, we can locate the

agents back to their counterfactual locations and compare the same agents under the kinked pol-
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icy and the counterfactual policy, giving us unbiased estimates of treatment effects on shifters and

bunchers.30

However, even though the estimation procedures on marginal bunching response and the

treatment effects on shifters and bunchers are still correct under potential relabelling or misreport-

ing, given that the real responses are smaller, we would anticipate a reduction in the magnitude of

the impacts. Redefine µ ≡ ∆y
∆zrl/zrl . Mathematically, the reasons are as follows:

τ
T E,shi f ter
y = E[yn − yct

n |n ∈ shi f ters]

= µ

(
z∗

z∗+∆z∗
1−g′−1( t

c)

1−g′−1( t+∆t
c )

−1
)
−λE(zrp,ct

n )

(
(t +∆t)

z∗

z∗+∆z∗
− t
)
+λ∆t × z∗

The last equality is based on the assumption that agents have the same preferences (and parame-

ters).

Recall we use the slope and level changes at the threshold z∗ when comparing the observed

outcome of always-takers and the obtained auxiliary outcome of shifters (when being located back

to the counterfactual locations). Accordingly, the equations for calibrating our structural parame-

ters µ,λ would change. Specifically, Equation (11) for the slope change would remain the same,

but Equation (10) for the level change would be:

Level Change at z∗ = µn

(
z∗

z∗+∆z∗
1−g′−1( t

c)

1−g′−1( t+∆t
c )

−1
)

(26)

− λ (t +∆t)z∗
(

z∗

z∗+∆z∗
−1
)

(27)

Under potential relabelling, to calibrate parameters µ,λ , we need an additional moment to identify

the relabelling cost parameter c. One possibility is to exploit variations in changes in the marginal

incentives across different thresholds.

While the previous analysis assumes that all agents share the same cost function of rela-

belling (i.e., c× zrl × g(δ ), where c is constant for all agents), it could be possible in reality that

relabeling cost functions are different across agents due to differential predetermined character-

30Note estimating counterfactual outcome distribution is based on the observed distribution of
always-takers and the extrapolation via assumptions on smooth counterfactual outcome distribu-
tion. It does not require information on observed outcome distribution of shifters. Therefore, it is
also unbiased.
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istics. If we know how to classify agents into subgroups with the homogeneous cost function of

relabelling within each subgroup, we can then analyze by subgroups, and there is no bias for each

subgroup estimation. However, without the knowledge of which agents belong to which group, we

have to conduct the analysis using the full sample. In this scenario, the estimated average response

level ∆̃z∗ based on one empirical moment B contains the potential aggregation bias, which leads to

the same aggregation bias as discussed in Subsection 4.3 on the heterogeneity in response elastic-

ity. The solution to the situation with heterogeneous relabeling costs across agents is the same as

the solutions to the heterogeneous preference in Subsection 4.3.

4.5 Diffusion

In our analyses mentioned above, we consider diffusion behavior for bunchers; that is, there is

no sharp bunching exactly at the kink point as bunching agents cannot target at the kink point

precisely. One may then be concerned whether diffusion behavior also happens for other agents.

Specifically, shifters adjust their values of z when a kinked policy is introduced, and may not target

precisely as well.31 Whether and how the diffusion by shifters biases our estimated counterfac-

tual density distribution and then the causal estimates? In this subsection, we discuss sources of

potential biases in the estimated counterfactual density distribution, excess bunching, the counter-

factual outcome distribution, and the treatment effect, when there is diffusion for both shifters and

bunchers.32

Denote the observed effort choice as z and the optimal targeted effort choice as ztargetted ,

with zi = ztargetted
i + εi, where εi denote the degree of diffusion for agent i. Hence, εi > 0 indicates

overshooting behavior, εi < 0 indicates undershooting behavior, and εi = 0 suggests precise target-

ing. We start with the case that the degree of diffusion for each shifter is a random draw from a

common i.i.d. distribution, and then investigate the case that different groups of agents draw their

diffusion degrees from different i.i.d. distributions.

Under the first scenario, the degree of diffusion for each shifter is a random draw from the

same distribution g(ε) with the mean value being µ(ε) = 0 and variance being Var(ε) = σ2. The

observed density distribution can be written as h(z) =
∫

ε
hct((z− ε) z∗+∆z∗

z∗
)
g(ε)dε , where hct()

31Note there are over-shooting and under-shooting at each point of z; therefore, we may not
observe excess bunching in the shifter’s distribution even if shifters are subject to diffusion.

32The general practice to deal with only the diffusion bunching is to treat the overall amount of
excess bunching around the kink point as the policy response (e.g., Saez, 2010).
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denotes the counterfactual density distribution and z∗
z∗+∆z∗ denotes the marginal buncher’s relative

change in z under the kinked policy.

Hence, bias arises from diffusion as hct((z− ε) z∗+∆z∗
z∗
)
̸= hct(z z∗+∆z∗

z∗
)
. Specifically, the bias

in the estimated counterfactual density is small when Var(εi) is small (i.e., less degree of diffusion)

or when the slope of hct() is small. To illustrate this point, consider a special situation where

εi = 0 with 60% probability, εi = ε with 20% probability, and εi = −ε with 20% probability.

Then, we have h(z) = hct(z z∗+∆z∗
z∗
)
∗60%+hct((z−ε) z∗+∆z∗

z∗
)
∗20%+hct((z+ε) z∗+∆z∗

z∗
)
∗20%. If

hct((z− ε) z∗+∆z∗
z∗
)
≈ hct((z+ ε) z∗+∆z∗

z∗
)
≈ hct(z z∗+∆z∗

z∗
)
, there is no bias even if we ignore shifters’

diffusion (i.e., by assuming h(z) = hct(z z∗+∆z∗
z∗
)
). Hence, when Var(εi) is small or the slope of h0()

is small, we have less bias when ignoring shifters’ diffusion.

Similarly, the outcome distribution is y(z) =
∫

ε
yr((z− ε) z∗+∆z∗

z∗
)
g(ε)dε , where yr() denotes

the auxiliary outcome distribution (by locating shifters back to their counterfactual locations). The

bias from diffusion is due to that yr((z−ε) z∗+∆z∗
z∗
)
̸= yr(z z∗+∆z∗

z∗
)
. When Var(εi) is small (i.e., less

degree of diffusion) or when the slope of yr() is small, the bias in the estimated auxiliary outcome

distribution (when ignoring the diffusion) is small.

Note that the treatment effects on shifters and bunchers depend on the estimation of the coun-

terfactual density, the auxiliary outcome distribution, and the counterfactual outcome distribution.

Hence, the bias from diffusion is small when (i) Var(εi) is small or (ii) when the slopes of hct and

yr are small. In practice, one can check the diffusion variance by exploring the diffusion pattern

around the cutoff, check the slope of hct by exploring the slope of the density for always-takers,

and check the slope of the auxiliary outcome distribution yr of shifters to understand the potential

degree of bias.

Then, we consider a more general setting in which different groups of agents randomly draw

their degree of diffusion from different distributions. For example, the self-employed are better at

targeting their annual income at the cutoff than the wage-earners. Specifically, assume there are M

groups of agents at each value of z in the counterfactual state (i.e., the linear policy), with the share

of each group denoted as αm. Each agent i belonging to group m randomly draws his/her degree

of diffusion εi from the density distribution gm(ε), with mean value µm(ε) = 0 and variance as

Varm(ε) = σ2
m.

The observed density distribution is shown as h(z) = ∑m αm
∫

ε
hct((z− ε)

z∗+∆z∗m
z∗

)
gm(ε)dε .

The bias from diffusion is due to two reasons: first, hct((z−ε)
z∗+∆z∗m

z∗
)
̸= hct(z z∗+∆z∗m

z∗
)
; and second,

∑m αmhct(z z∗+∆z∗m
z∗

)
̸= hct(z z∗+∆z

z∗
)
, where ∆z is the estimated marginal buncher’s response when
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ignoring preference heterogeneity. That is, biases come from neglecting the shifters’ diffusion and

neglecting the heterogeneity in the structural parameter. When ∑m αmσm is small (i.e., the average

dispersion in the degree of diffusion is small) and when the slope of hct() is small, we are back to

the scenario with preference heterogeneity discussed in Section 4.3.

The observed outcome distribution is y(z)= 1
∑m αm

∑m αm
∫

ε
yr

m
(
(z−ε)

z∗+∆z∗m
z∗

)
gm(ε)dε , where

yr
m() denote the auxiliary outcome distribution of group m. similarly, the bias from diffusion is gen-

erated due to two reasons: first, yr
m
(
(z−ε)

z∗+∆z∗m
z∗

)
̸= yr(z z∗+∆z∗m

z∗
)
; second, 1

∑m αm
∑m αmyr

m
(
z z∗+∆z∗m

z∗
)
̸=

yr(z z∗+∆z∗
z∗
)
. Therefore, when ∑m αmσm is small and when the slope of yr

m() is small, we are back

to the scenario with heterogeneity, which is discussed in Subsection 4.3.

4.6 Alternative Counterfactual Policy: linear high tax/co-payment rate

Our baseline analysis assumes that the counterfactual policy is a linear low tax/co-payment rate,

i.e., the same as the policy below the cutoff. As agents with values above the cutoff face a higher

marginal tax/co-payment rate under the kinked policy, they will reduce their value, leading to a

“bunching down” design. Meanwhile, agents with values below the above face the same marginal

incentive and pay the same amount of fees under the kinked policy. They are denoted as always-

takers. Accordingly, we have proposed an estimator for quantifying the impact of the kinked policy

on these agents: bunchers and shifters

Alternatively, we might consider an alternative counterfactual policy with a linear high

tax/co-payment rate (t +∆t). Compared to this new counterfactual policy, agents below the cutoff

face a lower tax/co-payment under the kinked policy and hence adjust their values of z upwards,

leading to a “bunching up” design. Meanwhile, as agents above the cutoff face the same marginal

incentive under the kinked policy, they won’t change their values of z. We denote them as never-

takers. However, in terms of outcomes, because never-takers do receive a lump-sum transfer un-

der the kinked policy (compared to the new counterfactual policy)33, their outcome values might

change. This composes the key difference for analyzing the policy impacts under “bunching up”

and “bunching down” designs.

Specifically, we cannot take the observed outcome distribution of never-takers as the new

counterfactual outcome distribution; instead, we need to adjust the impact from the lump-sum

33Denote the new counterfactual policy as T ct,new(z) = (t +∆t)z. For agents above the cutoff,
under the kinked policy, we have T (z) = (t+∆t)z−∆tz∗,∀z> z∗. Therefore, the lump-sum transfer
between the kinked policy and the new counterfactual policy is T ct,new(z)−T (z) = ∆tz∗,∀z > z∗.
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transfer. This is doable because we have a parameter λ which captures the impact of money T

on outcome y and we also know how large the money change is (i.e., ∆t × z∗). Therefore, with

modifications, we can still use the level change and the slope change at the cutoff z∗ between the

observed outcome distribution of never-takers and the auxiliary outcome distribution of shifters

to calibrate the parameters µ,λ and estimate the policy impacts (after addressing the impact from

lump-sum transfer). Details are shown in Appendix B. One thing to note is that, in the “bunching

up” setup, we assume that the impact from the lump-sum transfer shares the same parameter λ .

This assumption is more likely to be valid when the level change ∆t × z∗ is relatively small.

5 Application: Coinsurance Policy In China

We apply our aforementioned bunching technique to identify the causal impacts of the coinsurance

policy on the patients’ outpatient behaviors in China. Specifically, we first introduce the healthcare

system in China and the medical claim data for our empirical analysis. Next, we present the

bunching evidence to examine patients’ responses to the coinsurance policy. Then, we apply our

causal inference framework to study the policy effect.

5.1 Healthcare System in China

China established the current health insurance system since the late 1990s, and gradually achieved

universal health insurance coverage. The Urban Employee Basic Medical Insurance (UEBMI) was

first introduced in 1998, covering formal sector workers in the urban area. This was followed by

the gradual introduction of the New Cooperative Medical Scheme (NRCMS) during the period of

2003-2008 targeting the rural population, and then the Urban Resident Basic Medical Insurance

(URBMI) launched in 2007 targeting urban residents who were not covered by the UEBMI (i.e.,

the unemployed, children, students and the disabled in urban areas). Starting in 2010, the Chinese

government gradually integrated NRCMS and URBMI and established a unified Urban and Rural

Residents Basic Medical Insurance Scheme (URRBMI) to bridge the gap in medical care between

rural residents and urban residents who are not working. These basic health insurance programs

(i.e., URRBMI and UEBMI) expanded at a remarkable pace, covering more than 92% of the urban
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population and 97% of the rural population in 2011 in China (Yu, 2015).34

The benefits depend on the medical insurance catalogs and the program’s cost-sharing de-

sign. Specifically, the medical insurance catalogs specify the payment scopes and prices of drugs,

items of diagnosis treatment, and standards of medical service facility, which are the same for

both UEBMI and URRBMI. The cost-sharing design consists of the deductibles, copayment rates

(τ), and the maximum amounts payable (z∗(1− τ)), which are designed separately for outpatient

and inpatient care, vary across different tiers of hospitals and are different under UEBMI and UR-

RBMI schemes. Specifically, the insurance benefits (Benefits) and hence the annual out-of-pocket

expenses (Out-of-Pocket) under the insurance scheme are shown as:

Benefits =


z× (1− τ) if z ≤ z∗

z∗× (1− τ) if z > z∗
(28)

Out-of-Pocket =


z× τ if z ≤ z∗

z×1− z∗× (1− τ) if z > z∗
(29)

where z denotes the annual medical expenses eligible for insurance coverage (i.e., annual medical

expenses within the medical insurance catalog with the total deductibles subtracted); z∗ denotes a

statutory cutoff; τ denotes the co-payment rate (hence 1− τ denotes the reimbursement rate when

z < z∗). The values of z∗ and τ depend on the insurance schemes, with a lower reimbursement rate

(hence a larger copayment rate τ) and a lower maximum amount payable (i.e., a smaller threshold

z∗) under the URRBMI, compared to the UEBMI.

34The premiums for UEBMI are usually determined by the employee’s average monthly wages
in the previous year and are jointly borne by the employer and the employees concerned. It is
usually 2% of the salary for employees and 6% of the salary for employers. As for URRBMI,
a large portion of the premiums are subsidized by the government, with enrollees contributing a
small part.
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5.2 Data and Analysis Sample

Our empirical analysis draws on a dataset covering the universe of visit-level outpatient medical

claims in a city in the eastern part of China of all the enrollees under the city’s public health

insurance programs in 2011 and 2012. There were around 26 million residents (99% of urban

unemployed residents and 100% of rural residents who are not employees) enrolled under the

URRBMI and around 21 million (98.6% of urban employees ) enrolled under the UEBMI. Our

medical claim data contain approximately 19 million outpatient visits in 2011 and more than 21

million outpatient visits in 2012. For each visit, the data provide detailed information regarding

expenditures on the drugs, diagnosis, and treatment, the type of insurance, the eligible expenditure,

and patient ID. For each patient, we aggregate the visit-level medical expenditure data to the annual

level to obtain annual eligible expenditures and the total number of visits in a year.

The cutoff of annual reimbursement (z∗) under the URRBMI was 600 RMB in 2011 and 800

RMB in 2012, respectively, and the reimbursement rate (δ ) is 50% at the Tier 1 community health

services institutions and 40% at the Tier 2 and 3 hospitals. By contrast, the upper bound of annual

reimbursement (z∗) under the UEBMI is much higher: at 2500, 3000, 3500, 4500 RMB in 2011

(depending on whether the patient is on-the-job or retired and whether the disease is chronic or

not) and at 3500, 4000, 4500, 5500 RMB in 2012. The reimbursement rate (δ ) under the UEBMI

is also higher: 70% for on-the-job workers and 85% for retired workers. Details of the medical

insurance plan are shown in Table 1. Given the policy complexity in the UEBMI, we focus our

empirical analysis on the sample of the URRBMI which contains one policy threshold each year,

and use the sample of the UEBMI for placebo analyses to support our empirical identification.

[Insert Table 1 Here]

5.3 Bunching Evidence

To examine whether patients respond to the medical expenses deduction limits, we first plot the

density distribution of annual eligible expenses (z) for patients under the URRBMI. Results are

shown in Figure 4a for 2011 and Figure 4b for 2012, respectively. There is a clear bunching at

the policy threshold for both figures; that is, a significant and sharp bunching mass at 600 for 2011

and 800 for 2012. These results suggest that consistent with our theoretical analysis in Section 2,
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patients comply with the kinked policy by optimally choosing their medical consumption. Mean-

while, the fact that there is no excess bunching at the 2011 threshold of 600 in 2012 indicates that

patients incur low adjustment costs when the threshold changes, relieving the concern of stayers.

To alleviate the concern that bunching at the policy thresholds in Figures 4a-4b may be

spurious due to other confounding factors, we repeat the analysis for the sample of patients under

the UEBMI in Figure A1 in Appendix A. Given that the policy thresholds of the UEBMI were

much higher than those of the URRBMI, we should not expect any bunching mass at the policy

thresholds of the URRBMI. Indeed, we do not spot any bunching behavior at 600 in 2011 and at

800 in 2012. These findings lend support to our argument that patients indeed adjust their medical

expenses in response to the kinked reimbursement policy.

Another common concern related to bunching analyses is whether the adjustment is real

or just a relabelling behavior, which may generate estimation complexity and potential biases as

illustrated in Section 4.4. For example, studies detect a certain share of bunching response due

to relabelling in settings where agents self-report the values (e.g., Saez, 2010; Chen et al. 2021).

However, in our setting, the eligible medical expenses are not self-reported. Instead, the numbers

are aggregated from visit-level medical transactions, and hence, relabeling or misreporting is very

unlikely in this setup.

[Insert Figure 4 Here]

5.4 Causal Impacts on Patient Behavior

We have shown that patients adjust their eligible expenses to take advantage of the kinked reim-

bursement scheme, resulting in excess bunching at the threshold of the reimbursement limit. We

now explore the potential impacts of such adjustments on patients’ outpatient behaviors.

5.4.1 Stylized Facts

Before a formal estimation of the causal impacts, we first plot the raw relation between the eligible

annual medical expenses (z) and medical outcomes (y) to gain some direct evidence. We consider

whether a change in co-payment rate could affect patients’ choice of outpatient visits. Figure 5

reports the total number of outpatients at each bin level of eligible annual expenses for outpatients

under the URRBMI. Green triangles represent the distribution for 2011 and blue squares represent

45



the distribution for 2012, where sizes of triangles and squares are proportional to the sample size

in each bin for the corresponding group.

Let us first study the distribution of 2012, which is represented by the blue rectangles. To the

left of the policy threshold, there is a clear upward relation between the total number of outpatient

visits and the eligible annual expenses. This trend carries on to the policy threshold and is then

followed by a significant drop in the total number of visits which becomes much flat afterward.

Meanwhile, overall the total number of visits to the left of the policy threshold is larger than those

to the right of the policy threshold. These results provide direct visual support to our theoretical

analysis in Section 2: compared to patients located to the left of the threshold (with a marginal

copayment rate of τ), patients to the right of the threshold respond to the increase in copayment

rate (of 100%) by paying fewer outpatient visits.

The distribution in 2011 shows a similar pattern as those in 2012, in which values to the

left of the policy threshold are generally larger than those to the right of the policy threshold.

These further lend support to our theoretical framework elaborated in Section 2 that changes in

the co-payment rate significantly impacted patients’ decisions for outpatient visits. Combining the

distributions of 2011 and 2012, it is interesting to note that jumps only happen at the correspond-

ing policy thresholds. Specifically, there is no clear jump at 600 in the 2012 distribution when

the policy threshold was at 800; and vice, versa. These results are consistent with the bunching

behavior in Figures 4, which further confirm that induced manipulation behavior and its impacts

were caused by the kinked policy.

To further alleviate the concern of spurious responses due to other factors, we examine the

distributions of 2011 and 2012 for patients under the UEBMI. As the policy thresholds under the

UEBMI were much higher than those under the URRBMI in both 2011 and 2012, we should not

expect any significant behavioral changes around 600 or 800. As shown in Figure A2 in Appendix

A, we find smooth relations between the total number of outpatient visits and eligible expenses

throughout the whole region in both years, with no systematic changes below and at the placebo

policy thresholds. These results lend further support to the argument that patients adjust their

number of outpatient visits in response to the kinked medical insurance plan.

[Insert Figure 5 Here]
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5.4.2 Counterfactual Density Distribution

A crucial element in formally estimating the magnitude of policy impact is the counterfactual

density distribution; that is, the density distribution under the counterfactual linear scheme with

the low co-payment rate. To this end, we estimate the counterfactual density distribution following

our proposed method in Section 3.1 and compare it with the commonly used approach by Chetty

et al. (2011).35

Figure 6a shows the observed density distribution h() and our estimated counterfactual den-

sity distribution hct() based on outpatients under the URRBMI in 201236. Specifically, the solid

green curve represents the observed density distribution, and the dashed red curves represent the

estimated counterfactual density distribution. Meanwhile, the solid vertical line indicates the pol-

icy threshold (annual reimbursement limit z∗), the long vertical dashed line in the upper part of the

density distributions shows the estimated marginal buncher’s response ∆z∗, and two short dashed

vertical lines around the threshold specify the diffuse range that is visually determined.

[Insert Figure 6 Here]

Three groups of patients under the kinked reimbursement policy are clearly shown in the

figures: (a) always-takers with counterfactual expenses zct ≤ z∗ remain unchanged with z = zct and

located to the left of the threshold; (b) bunchers with counterfactual expenses zct ∈ (z∗,z∗+∆z∗]

adjust their expenses downwards and bunch at the threshold, i.e., z = z∗; (a) shifters with coun-

terfactual expenses zct > z∗+∆z∗ reduce their expenses to z = zct × z∗
z∗+∆z∗ , resulting in leftwards

shifting in the counterfactual density distribution and located to the right of the threshold z∗.

In magnitude, the estimated marginal buncher’s response ∆z∗ is 260 RMB and significant at

the 1% level. This number indicates that the counterfactual values of annual eligible expenses are

around 1.3 times the observed values under the kinked policy for the marginal bunching agents and

the shifting agents (i.e., zct

z = z∗+∆z∗
z∗ = 132.5%).

It is worth noting that the counterfactual density distribution to the left of the policy threshold

is not an upward parallel shifting of the observed density distribution. This is because patients

with different counterfactual expenses shift leftwards with different magnitudes in response to

the kinked policy as elaborated in Section 2, resulting in the counterfactual and observed density

35We control for the reference points effect using the method in Section 4.1.
36The results remain similar if we use the 2011 sample, as shown in Figures 4 & 5 earlier. For

illustration purposes, we focus on the 2012 sample hereafter.
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distribution having different shapes in the region to the left of the threshold. These are in contract

with the assumption under the estimation framework by Chetty et al. (2013). Specifically, by

assuming an upward parallel shift from the observed to the counterfactual density distributions,

estimates following Chetty et al. (2011) end up overestimating the marginal buncher’s response.

As shown in Figure 6b, the estimated marginal buncher’s response ∆z∗ is 400 RMB, which is

larger than our estimates of 260 RMB.

5.4.3 Estimation of Policy Impacts and Structural Parameters

We now use the causal estimation framework proposed in Section 3.2 to quantify the impact of the

kinked medical reimbursement scheme on outpatient behaviors for shifting and bunching patients

separately.

Figure 7 plots the empirical results using the 2012 outpatient data with the policy threshold

at 800. Consistent with the outlay in Figure 6, the solid vertical line indicates the policy thresh-

old, the long vertical dashed line in the upper part of the distribution shows the estimated marginal

buncher’s response ∆z∗, and two short dashed vertical lines around the threshold specify the diffuse

range. Green dots present the observed distribution of the total number of outpatient visits annually

(in logarithm) (y) against eligible annual expenses (z). Blue dots represent the auxiliary outcome

distribution for shifting patients when we locate shifters back to their counterfactual location of z.

Following Equation (21) in section 3.2, we obtain the counterfactual outcome distribution (repre-

sented by the red dashed curve) and calibrate the structural parameters (µ,λ ) as shown in columns

1 & 2 of Table 2. It indicates that when eligible annual expenses z increase by 1%, the number of

outpatient visits annually increase by 14.384, significant at 1% level, capturing the direct impact

from changes in z; meanwhile, when the annual out-of-pocket increases by 100 RMB (as a result

of changes in z), the number of outpatient visits annually increase by 1.9, significant at 1% level,

capturing the indirect impact from changes in z. As discussed in section 2, the introduction of the

kinked policy leads to a reduction in z for shifting patients and bunching patients, given that the

estimated values µ̂ > 0, λ̂ > 0, therefore, we would anticipate a negative effect on the number of

outpatient visits annually for both shifters and bunchers.

To verify this, we can compare the observed outcome distribution (green dots) and the coun-

terfactual outcome distribution (red dashed line) in Figure 7. There are significant decreases in the

number of outpatient visits for shifting agents (those with zct ∈ (1060,1275) and z ∈ (800,980))

and a substantial decrease for bunching agents(those with zct ∈ (800,1060] and z = z∗). In terms
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of the economic magnitude, column 3 of Table 2 shows that the policy effect for shifting agents is

-2.110, significant at 1%, implying that the kinked medical insurance policy causes shifting agents

to pay around two times fewer outpatient visits, compared to the counterfactual linear policy with

a low co-payment rate. The estimation results for bunchers are shown in column 4 of Table 2. We

find a negative average treatment effect on bunching patients as well, although the magnitude is

smaller because bunching patients encounter a smaller reduction in z compared to shifting patients.

[Insert Table 2, Figure 7 Here]

5.4.4 Heterogeneous Impacts

Patients in different age groups may respond heterogeneously to the kinked reimbursement scheme.

We next split the full sample into three subgroups based on patients’ age at the time of treatment

and explore the heterogeneous impacts.

Figure 8 compares the degree of bunching for the three subgroups: children (patients aged

under age 15), middle-aged adults (patients aged between 16 and 54), and elders (patients aged

above 55). We find excess bunching in all three subgroups, indicating that patients indeed adjust

their eligible expenses as a response to the kinked medical insurance scheme. In addition, we find

similar level of excess bunching for all age groups,with the marginal buncher’s response at 260

RMB.

Then, we move on to the policy impact on the number of outpatient visits annually. Figure

9 shows the observed and counterfactual outcome distributions for each subgroup. Table 3 shows

the calibrated parameters and the estimated policy impact for each subgroup. bunching patients

and shifting patients of all age groups have decreased their number of outpatient visits when the

co-payment rate decreased due to the kinked policy. The impact is slightly larger on patients aged

between 16 to 54, compared to other groups. The consistency in results indicates that financial

incentives matter for patients’ outpatient behaviors across all age groups.

One thing to note is that the estimated causal impact on the full sample is close to the

weighted average of the causal impacts on these subgroups. This is consistent with our discussion

in section 4.4 that when the heterogeneity in bunching response is relatively small, there is very

limited bias when locating shifting agents back to their original location under the homogeneous

parameter assumption. Therefore, the average bunching response, average calibrated structural
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parameters, and the average causal effects under the homogeneous approach are a close approxi-

mation to the average estimates of each subgroup when heterogeneity is taken into consideration.

5.5 Alternative Policies: Changes in Thresholds or Co-payment Rates

Given the calibrated value of structural parameters (µ,λ ,e) and our understanding of patients’

behavior under kinked policies, we can study the impact of alternative policy designs, by varying

the location of the kink and by changing the difference in co-payment rates below and above the

threshold. These analyses could shed light on policy designs by exploring questions like these:

fixing the overall cost of medical insurance, what kind of policy design generates the highest

outcomes for the overall population? Further, who benefits from such a policy? Our approach

allows us to conduct certain welfare analyses using a reduced-form approach, however, we do

note that the analysis rules out potential changes in price due to general equilibrium effects (e.g.,

changes in patient behavior might affect the price of seeing the doctors).

As an illustration example, we analyze the impact of increasing the cutoff z∗ from 600 RMB

to 800 RMB on the medical insurance burden and the overall number of outpatient visits. When

the cutoff increases, patients in the middle of the distribution of annual eligible expenses (z) would

see a surge in outpatient visits due to the reduction in the co-payment rate, while other patients

remain the same. This is consistent with our findings in Panel A of Table 4, where the overall

number of outpatient visits and insurance burden increase as the cutoff moves rightwards.

Our current policy imposes a 100% co-payment rate once the expenses exceed the cutoff (i.e.,

z > z∗). If we are willing to reduce the co-payment rate for z > z∗, to maintain a constant insurance

burden, we need to reduce the threshold by imposing more patients on the higher marginal copay-

ment scheme. Which policy is better, a higher cutoff with a larger jump in copayment rate at the

cutoff, or, a lower cutoff with a smaller jump in copayment rate at the cutoff? This question would

be more of interest if there are relabelling or misreporting 37 In our setup, there is no misreporting.

Here we study the distributional impact, measured by the dispersion of patient outcomes. If we

are imposing a high cutoff, high jump of copayment rate across the cutoff (denoted as Policy I),

then, a small group of patients with high medical demand would see a big reduction in outpatient

visits. By contrast, if we are imposing a low cutoff, small jump of copayment rate across the cutoff

37Chen et al. (2021) pointed out that when there is misreporting, a larger threshold is better at
stimulating R&D expenses using tax incentives, as the share of firms who misreporting is smaller.
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(denoted as Policy II), then, a large group of patients with medium to high medical demand would

see a mild reduction in outpatient visits. Both Policy I and Policy II affect outpatient behaviors, but

Patient II imposes a more balanced impact than Policy I. This is shown in Panel B of Table 4, where

Policy II has a higher dispersion of outpatient expenses and visits, holding the insurance burden

(total reimbursement) constant. These distributional analyses could be of interest to policymakers

in various setups where a kinked policy is relevant.

6 Conclusion

In this paper, we develop a reduced-form estimator for identifying treatment effects under kink

settings when agents manipulate or adjust their values of the assignment variable in response to

the non-linear policy. The method is model-free and makes use of agents’ interior response behav-

ior. Specifically, under kinked settings, agents to one side of the cutoff face a change in marginal

incentives and adjust their assignment variable by a constant share. Such interior response allows

us to recover the counterfactual density and outcome distribution, which facilitates the estimation

of treatment effects on bunching agents and shifting agents. Extensions with diffuse bunching,

rounding in assignment variable values, potential misreporting/relabelling, optimization frictions,

and heterogeneity in structural parameters are also explored. We apply the proposed causal estima-

tor to a medical insurance setting in China where patients are subject to a much higher co-insurance

rate when their cumulative annual medical expenses cross a statutory threshold. Based on adminis-

trative visit-level outpatient data from a city in China, we show that patients adjust their outpatient

behavior in response to the kinked policy, indicating a health and financial tradeoff by patients.
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Table and Figures

Table 1. Medical Insurance Plan

2011 2012
z∗ δ z∗ δ

Insurance Plans (1) (2) (3) (4)

URRBMIa 600 50% 800 50%
URRBMIb 600 40% 800 50%
UEBMIa 3500 70% 4500 70%
UEBMIb 2500 70% 3000 70%
UEBMIc 4500 85% 5500 85%
UEBMId 3000 85% 4000 85%

Notes: z∗ denotes the upper bound of annual reimburse-
ment, and δ denotes the reimbursement rate in the city
where we have access to all the medical data. URRBMIa
and URRBMIb correspond to patients under URRBMI
(including urban unemployed and rural) treated at Tier
1 community health institutions and Tier 2/3 hospi-
tals, respectively. UEBMIa and UEBMIb correspond to
employed workers under UEBMI for non-chronic and
chronic diseases respectively. UEBMIc and UEBMId

correspond to retired workers under UEBMI for non-
chronic and chronic diseases respectively.
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Table 2. Estimates of Policy Effects on Patients’ Behavior

Number of Outpatient Visits (log)
Shifting Patients Bunching Patients

µ λ TE TE
(1) (2) (3) (4)

Treatment Effect 16.503*** 0.019*** -2.110*** -0.463***
(1.139) (0.002) (0.122) (0.037)

Density Order 4 4 4 4
Outcome Order 2 2 2 2
Observations 184,202 184,20 184,202 184,20

Significance: *.10; **.05; ***.01.
Notes: Column (1) reports changes in ∆z∗ for the marginal bunching patient,
estimated from the density distribution. As for patient outcomes, we focus on
the number of outpatient visits annually. Column (2) reports the calibrated
value of structural parameter µ , reflecting the direct impact of percentage
changes in z on outcome y. Column (3) reports the calibrated value of struc-
tural parameter λ , reflecting the impact of changes in T (due to the introduc-
tion of kinked policy and changes in z) on outcome y. Column(4) reports
the impacts of introducing the kinked policy (compared to the linear low co-
payment counterfactual policy) on shifting patients. Column (5) reports the
impacts on bunching patients. Details are shown in section 3. Standard errors
are computed via bootstrap.
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Table 3. Estimates of Policy Effects on Patients of Different Age Groups

Number of Outpatient Visits (log)
Shifting Patients Bunching Patients

µ λ TE TE
(1) (2) (3) (4)

(a) Aged≤15
Treatment Effect 12.359*** 0.012*** -1.730*** -0.128**

(1.970) (0.003) (0.182) (0.058)
Density Order 4 4 4 4
Outcome Order 2 2 2 2
Observations 45,401 45,401 45,401 45,401

(b) Aged: 16∼54
Treatment Effect 14.863*** 0.016*** -1.986*** -0.493***

(2.478) (0.004) (0.258) (0.078)
Density Order 4 4 4 4
Outcome Order 2 2 2 2
Observations 35,947 35,947 35,947 35,947

(C) Aged: ≥55
Treatment Effect 15.050*** 0.018*** -1.816*** -0.480***

(1.671) (0.002) (0.153) (0.047)
Density Order 4 4 4 4
Outcome Order 2 2 2 2
Observations 100,874 100,874 100,874 100,874

Significance: *.10; **.05; ***.01.
Notes: For patient outcomes, we focus on the number of outpatient visits
annually. Column (1) reports the calibrated value of structural parameter µ ,
reflecting the direct impact of percentage changes in z on outcome y. Column
(2) reports the calibrated value of structural parameter λ , reflecting the impact
of changes in T (due to the introduction of kinked policy and changes in z) on
outcome y. Column(3) reports the impacts of introducing the kinked policy
(compared to the linear low co-payment counterfactual policy) on shifting
patients. Column (4) reports the impacts on bunching patients. Panels (a),
(b), and (c) present the analysis for patients aged below 15, aged between 16
to 54, and patients aged above 55. Details are shown in section 3. Standard
errors are computed via bootstrap.
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Table 4. Cost and Benefits Analyses

Number of Outpatient Visits (log)
Cutoff z∗ 600 650 700 800

(1) (2) (3) (4)

A: holding ∆t = 1− t for z > z∗

Total Outpatient Visits 521.18 668.62 832.53 1184.304
Total Eligible Expenses 110810.21 113710.39 116755.20 122585.19
Total Reimbursement 49634.53 52391.85 54790.30 58509.31
Observations 184,202 184,202 184,202 184,202

(B) Varying z∗ and ∆t
Policy I Policy II

z∗ ∆t z∗ ∆t
800 1− t 650 0.253∗ (1− t)
(1) (2) (3) (4)

Dispersion of "Outpatient Visits (log)" 0.096 .102
Mean Value of "Outpatient Visits (log)" 1.857 1.744
Dispersion of "Eligible Expenses" 0.203 0.255
Mean Value of "Eligible Expenses" 673.741 693.668
Total Reimbursement 58509.312 58509.299
Observations 184,202 184,202

Significance: *.10; **.05; ***.01.
Notes:
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Figure 4 Density Distribution of Eligible Annual Medical Expenses for Patients under the UR-
RBMI Plan

(a). URRBMI in 2011
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(b). URRBMI in 2012
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Density of URRBMI in 2012

Note: The cutoff of eligible annual medical expenses for outpatients under the URRBMI plan was
600 in 2011 and increased to 800 in 2012.
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Figure 5 Conditional Distribution of Patient Outcomes – Number of Annual Outpatient Visits (log)
under the URRBMI Plan
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Figure 6 Density Distribution of Eligible Annual Medical Expenses for Patients under the UR-
RBMI Plan in 2012: Observed and Counterfactual (using the proposed method)

(a). Our Method

0
20

00
0

40
00

0
60

00
0

D
en

si
ty

400 450 500 550 600 650 700 750 800 850 900 950 1000105011001150120012501300
Eligible Annual Expenses

Observed Shifters: extrapolated

Shifters: locate back Counterfactual

Bunching down: Delta_Z=260(4.97); bin=10 Yuan;
Data: URRBMI.

Density of Eligible Annual Expenses in 2012

(b). Following Chetty et al. (2011)
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Note: The cutoff of eligible annual medical expenses for outpatients under the URRBMI plan was
800 in 2012. The counterfactual distribution (when patients are subject to a linear low

co-payment rate, marked by the dashed line) in panel (a) is estimated following the method
proposed in section 3.1, while that in panel (b) is estimated following Chetty et al. (2011).
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Figure 7 Conditional Distribution of Patient Outcomes – Number of Outpatient Visits Annually
under the URRBMI Plan: Observed and Counterfactual
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Note: The cutoff of the eligible annual medical expenses for outpatients under the URRBMI plan
was 800 in 2012. The counterfactual distribution (when patients are subject to a linear low
co-payment rate, marked by the dashed line) is estimated following the method proposed in

section 3.2.
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Figure 8 Density Distribution of Eligible Annual Medical Expenses for Patients at Different Age
Groups under the URRBMI Plan

(a). Aged below 15
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(b). Aged between 16 to 54
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(c). Aged above 55
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Note: The cutoff of eligible annual medical expenses for outpatients under the URRBMI plan was
800 in 2012. The counterfactual distribution (i.e., when medical expenses are not deductible,

marked by the dashed line) is estimated following the method proposed in section 3.1.
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Figure 9 Conditional Distribution of Patient Outcomes – Number of Outpatient Visits Annually for
Patients at Different Age Groups under the URRBMI Plan

(a). Aged below 15
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(b). Aged between 16 to 54
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(c). Aged above 55
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Note: The cutoff of the eligible annual medical expenses for outpatients under the URRBMI plan
was 800 in 2012. The counterfactual distribution (when patients are subject to a linear low
co-payment rate, marked by the dashed line) is estimated following the method proposed in

section 3.2.
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Appendices

Appendix A: Additional Tables and Figures
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Figure A1 Density Distribution of Eligible Annual Medical Expenses for Patients under the
UEBMI Plan

(a). Placebo: UEBMI in 2011
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(b). Placebo: UEBMI in 2012
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Note: The cutoff of eligible annual medical expenses for outpatients under the UEBMI plan was
above 1000 in both 2011 and 2012. This serves as a robustness check.
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Figure A2 Conditional Distribution of Patient Outcomes under the UEBMI Plan
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above 1000 in 2011 and 2012. This serves as a robustness check.
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Appendix B: Alternative Counterfactual Policy with a high lin-

ear rate – bunch up

B.1 A Generalized Framework Under the Kink Setting

B.1.1 Setup

Recall the focal kinked policy that states agents face a tax rate (or co-payment rate) of t if

their value of z is below a statutory cutoff z∗ but face a higher marginal tax rate (or co-payment

rate) of t +∆t if their z > z∗. Agents’ optimal choice z under the kinked policy is given as:

z =



z(1,n) if n ≤ nL

z∗ if n ∈ (nL,nH ].

z(0,n) if n > nH

where D = 1 indicates that agents face the lower marginal tax/co-payment rate of t and D = 0

indicates agents face the high marginal tax/co-payment rate of t+∆t; and n is an unobserved agent

heterogeneity, with z(D,n) increasing in n.

Consider an alternative counterfactual policy where agents always face the high tax/co-

payment rate of t +∆t. That is, T act(z) = (t +∆t)× zact . Consequently, agents’ optimal choices

are zact = z(0,n).

For agents with n < nL, they increase their z in response to the lower marginal tax rate

(co-payment rate) of t under the kinked policy, (z = z(1,n) > z(0,n) = zact), but stay in the inte-

rior of the lower bracket, compared to the alternative counterfactual policy. We denote them as

“shifters”, or, agents with “interior response”. Next, for agents with n ≥ nH , the optimal z under

the kinked policy remains the same as zact in the alternative counterfactual policy as they face the

same marginal tax (co-payment) rate of t +∆t. We denote these agents as “never-takers”. Finally,

for agents with n ∈ [nL,nH), their optimal choice under the kinked policy is to increase their z

and bunch at the threshold z∗. We denote them as “bunchers”, as their behavior produces excess
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bunching in the density distribution at the kink point z∗ when the kinked policy is introduced.

Following the Separability assumption that z(D,n) = f (D;e)g(n;e), where e is a structural

parameter, we would have

z =



z(0,n) f (1;e)
f (0;e) if n < nL

z∗ if n ∈ [nL,nH)

z(0,n) if n ≥ nH

(30)

That is, agents with n < nL who originally choose z(0,n) under the alternative counterfactual linear

policy respond to the kinked policy by setting z = z(1,φ) = z(0,n) f (1;e)
f (0;e) < z∗.

Note that for marginal bunchers with nL, the optimal choice under the kinked policy is

given by z = z(1,nL) = z∗, and their location under the alternative counterfactual linear policy

is z(0,nL) = z∗−∆z∗,act , where ∆z∗,act is the change in z by the marginal bunching agent with nL

due to the introduction of the kinked policy. Hence, the excess bunching at the kink point is the

cumulative density of bunchers (i.e., agents with n ∈ [nL,nH), and can be derived as:

B =
∫ z∗

z∗−∆z∗,act
hact(z)dz,

where hact(z) denotes the counterfactual density distribution of z (i.e., the one under the alternative

linear high tax/co-payment rate plan).38

Therefore, for all agents with n < nL, we have,

z
zact =

z(1,φ)
z(0,φ)

=
f (1;e)
f (0;e)

=
z∗

z∗−∆z∗,act . (31)

Equation (31) characterizes the relationship between the original location (under the alternative

counterfactual linear policy) and the new location (under the kinked policy) for each shifting agent.

Remark 3. Studies in the bunching literature largely use Equation (31) to back out the struc-

tural parameter from the estimated value of ∆z∗,act . For example, in Saez (2010), the equivalent of

Equation (31) is ( 1−t
1−t−∆t )

e = z∗
z∗−∆z∗,act .

Combining Equations (30) and (31), we can summarize the change in z as

38The observed density distribution of z is denoted by h(z).
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z
zact =



z(1,φ)
z(0,φ) =

f (1;e)
f (0;e) =

z∗
z∗−∆z∗,act if n < nL

z∗
z(0,φ) if n ∈ [nL,nH)

z(0,φ)
z(0,φ) = 1 if n ≥ nH

. (32)

Hence, moving from the alternative counterfactual linear scenario to the state with the kinked

policy, all agents with n < nL (shifters) increase their z by a constant share z∗
z∗,act−∆z∗ −1, but do not

bunch at the cutoff z∗.39 Meanwhile, agents with n ∈ [nL,nH) (bunchers) increase their z to bunch

at the cutoff z∗. By contrast, agents with n ≥ nH (the never-takers) remain unchanged.

Equation (32) enables us to estimate the counterfactual density distribution hact(), the excess

bunching mass B at the kink point, and the marginal bunchers’ response ∆z∗,act nonparametrically.

Details will be discussed later in subsubsection B.2.1.

B.1.2 Causal Inference under Kinked Bunching

Denote y() as the observed outcome distribution under the kinked policy and h() the ob-

served density distribution. Meanwhile, denote yact() as the counterfactual outcome distribution

under the alternative high tax/co-payment rate, the estimation of which will be discussed in subsub-

section B.2.2. Meanwhile, denote hact() as the corresponding counterfactual density distribution,

the estimation of which will be discussed in subsection B.2.1.

Change in Outcome Distribution of Shifters

As discussed in the previous subsection 2.1, agents with zact < z∗ −∆z∗,act (i.e., n < nL)

would increase their values of z when faced with a lower tax/co-payment rate under the kinked

policy. That is, under the kinked policy, shifters would set z = zact z∗
z∗−∆z∗,act . The change in z would

generate three changes to the outcome distribution:

First, the relocation effect. Even if the change in z has no impact on y, such a “relocation”

behavior (from zact to z) would change the outcome distribution. Therefore, if we directly compare

yact with y along the y-axis, we are not comparing the same agent. However, we do know where

each agent has moved to. Therefore, if we relocate each agent under the kinked policy back to

his/her counterfactual location, then, comparing the values along the y-axis would give us the

39Note that each shifter’s adjustment (z− zact) is not a constant, it depends on the initial location
(zact). Alternatively, we can take the logarithm of z so that each shifter’s adjustment will be a
constant, i.e., lnz− lnzact = ln z∗

z∗−∆z∗,act .

69



treatment effect on “shifters”.

Treatment Effect on “Shifters”

τ
T E,shi f ter
y = E[yn − yact

n |n ∈ shi f ters]

=
∫ z∗−∆z∗,act

zmin

(
yr(zact)− yact(zact)

)
hact(zact)∫ z∗−∆z∗,act

zmin hact(zact)dzact
dzact (33)

where yr(zact)≡ y(zact z∗
z∗−∆z∗,act ) denotes the resulting auxiliary outcome distribution when we lo-

cate shifters at z back to their alternative counterfactual locations zact using the relation that z =

zact z∗
z∗−∆z∗,act . That is, when we reshape the observed outcome distribution based on the changes in

the agents’ location of z, the outcome distribution changes from y(z) to y(zact z∗
z∗−∆z∗,act )≡ yr(zact).

Second, an increase in the value from zact to z could directly affect outcome y. For example,

an increase in taxable income could affect consumption, or an increase in medical expenses could

affect health. Define semi-elasticity µn ≡ ∆yn
∆zn/zn

, where n denotes agent heterogeneity as defined

previously in subsection 2.1. Recall for shifters, we have z
zact =

z∗
z∗−∆z∗,act . Therefore,

(yn − yact
n )|due to direct change in z = µn

( z∗

z∗−∆z∗,act −1
)

That is, the change in the value of z would directly lead to a level change in y.

Third, changes in taxes or fees (T ) that shifters pay could also affect outcome y. Recall

that under the alternative counterfactual policy, we have T act(zact) = (t +∆t)× zact
n , and under the

kinked policy, we have T (z) = t × z = t × z∗
z∗−∆z∗,act × zact

n . Define −λn ≡ ∆yn
∆Tn

. Hence, we have

yn − yact
n |due to change in T = −λn

(
t × z∗

z∗−∆z∗,act × zact
n − (t +∆t)× zact

n
)

= −λnzact
n
(
t × z∗

z∗−∆z∗,act − (t +∆t)
)

That is, the change in tax or fees (T ) would lead to both a level change and slope change in y.

Following Assumption 2 that the impacts from z and T on outcome y are additive and com-
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bining the second and third points, we have

τ
T E,shi f ter
y = E[yn − yact

n |n ∈ shi f ters]

= E[µn]
( z∗

z∗−∆z∗,act −1
)
−E[λnzact

n ]
(
t × z∗

z∗−∆z∗,act − (t +∆t)
)

Assume homogeneous preference and thus single response elasticities across agents (i.e., µn =

µ,λn = λ ), a condition commonly made in the bunching literature (see, e.g., Saez 2010; Chetty et

al. 2011, Kleven 2016;). The above equation can be simplified as

τ
T E,shi f ter
y = µ

( z∗

z∗−∆z∗,act −1
)
−λE[zact

n ]
(
t × z∗

z∗−∆z∗,act − (t +∆t)
)

(34)

Identifying Sufficient Statistics. We claim µ and λ are sufficient statistics for estimating

treatment effects under policy simulations because changes in policy cutoffs or tax/co-payment

rates would result in changes in z and hence changes in outcome variables. We propose estimating

these parameters by exploiting the level and slope change at z∗ when comparing the distributions

yact(zact) and the extrapolated auxiliary outcome distribution yr(zact). Specifically, we have

Level Change at z∗ = µ
( z∗

z∗−∆z∗,act −1
)
−λ z∗

(
t × z∗

z∗−∆z∗,act − (t +∆t)
)

(35)

Slope Change at z∗ = −λ
(
t × z∗

z∗−∆z∗,act − (t +∆t)
)

(36)

where estimation of the level change and slope change at z∗ is explained in the next subsubsection

B.2.2.

Change in Outcome Distribution of Bunchers

Agents with zact ∈ [z∗−∆z∗,act ,z∗), i.e., n ∈ [nL,nH), would increase their value of z and

bunch at the cutoff (z = z∗) under the kinked policy. The changes in z would also generate changes

in the outcome distribution.

Under the sharp bunching scenario, agents with zact ∈ [z∗−∆z∗,act ,z∗) relocate to z = z∗. As

it is impossible to find a one-to-one mapping for each bunching agent, we take all the bunching

agents as an entity and identify the average treatment effect on “bunchers” by comparing changes

in the average outcome value.
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Treatment Effect on “bunchers” under Sharp bunching

τ
T E,buncher
y = E

[
yct

n − yn|n ∈ buncher
]

= Y buncher −Y buncher,act

= ybuncher(z∗)−
∫ z∗

z∗−∆z∗.act
yact(zact)

hact(zact)∫ z∗
z∗−∆z∗.act hact(zact)dzact

dzact (37)

where ybuncher(z∗) denotes the average outcome of bunchers under the kinked policy, estimation of

which are shown below.

Specifically, under the kinked policy, observations at the threshold z∗ contain two groups of

agents: (1) bunching agents with zact ∈ [z∗−∆z∗,act ,z∗) who increase their value to the threshold

z = z∗ in response to the kinked policy; (2) never-takers with zct = z∗ who remain at the threshold

z= z∗. By contrast, under the counterfactual linear policy, there is only never-takers at the threshold

z∗. Therefore, the density of bunchers under the kinked policy is given as hbunch(z∗) = h(z∗)−
hact(z∗). Further, the observed average outcome y(z∗) is the weighted average of bunchers and

never-takers, i.e., y(z∗) =
(
ybuncher(z∗)hbuncher(z∗)+ yact(z∗)hact(z∗)

) 1
h(z∗) . Therefore, we obtain

the average outcome of bunchers under the kinked policy ybuncher(z∗). That is,

ybuncher(z∗) =
y(z∗)h(z∗)− yact(z∗)hact(z∗)

h(z∗)−hact(z∗)
. (38)

Treatment Effect on “bunchers” under Diffuse bunching is omitted here. One can follow the

same logic as the baseline while adjusting for the alternative counterfactual policy.

Change in Outcome Distribution of Never-Takers

Agents with zact ≥ z∗ (i.e., n ≥ nH) would not adjust their z under the kinked policy, because

the marginal tax/co-payment rate remains the same, with z = zact . However, compared to the

alternative counterfactual policy, never-takers pay less money under the kinked policy, i.e., T =

(t +∆t)z−∆t × z∗ = T act −∆t × z∗. It acts like a lump-sum transfer.

We analyze the potential changes in outcome distribution for never-takers under the kinked

policy. First, there is no relocation effect as z = zact . Second, there is no impact on outcome y from

direct changes in z, as there is no change in z. Third, changes in taxes or fees (T ) that never-takers
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pay could affect outcome y. Recall −λn ≡ ∆yn
∆Tn

. Hence, we have

yn − yact
n |due to change in T = λn∆t × z∗

That is, the change in tax or fees (T ) would lead to a level change in y.

Combined, we have

τ
T E,never−takers
y = E[yn − yact

n |n ∈ shi f ters]

= E
[
λn∆t × z∗

]
= E(λn)∆t × z∗

= λ∆t × z∗ (39)

where the last equality is based on the assumption of homogeneous preference and thus single re-

sponse elasticity across agents (i.e., µn = µ,λn = λ ), a condition commonly made in the bunching

literature (see, e.g., Saez 2010; Chetty et al. 2011, Kleven 2016;). Estimation of the level change

for never-takers is explained in the next subsubsection B.2.2.

B.2 Empirical Estimation

Our aforementioned estimation framework for the causal inference under the kinked bunching

relies on the estimation of the counterfactual density hact() and outcome yact() distributions under

the alternative linear policy. In this section, we elaborate on the empirical details to estimate these

counterfactuals.

B.2.1 Estimating Counterfactual Density Distribution

We start with the strategy to recover the alternative counterfactual density distribution hact(z),

which can be applied to any kinked settings. As shown in Equation (32), agents’ responses to the

kinked policy can be summarized as follows: (i) shifters with zct < z∗ − ∆z∗,act increase their

value but do not bunch at the threshold, i.e., z = zct × z∗
z∗−∆z∗,act < z∗. (ii) bunchers with zct ∈

[z∗−∆z∗,act ,z∗) bunch at the threshold, i.e., z = z∗ > zct ; (iii) never-takers with zct ≥ z∗ remain

unchanged, i.e., z = zct ≥ z∗;.

To recover the alternative counterfactual density distribution hact() from the observed density
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distribution h(), we design a two-step estimation framework. First, we move shifters back to

their counterfactual locations, which leads to the estimation of hact(z) within the region (zmin,z∗−
∆z∗,act) for shifters. Then, we extrapolate hact() for bunching agents using the information of hact()

for shifters and never-takers, (as hact = h() in the region [z∗,zmax] for always-takers). Specifically,

it is implemented by the following algorithm.

First, given the observed location z and an initial guess ∆̂z∗,act
initial

for shifting agents, we

infer the counterfactual choice zact,initial based on the following relation derived from equation

(32):

zact,initial =


z z∗−∆̂z∗,act

initial

z∗ if z < z∗−u1

z if z > z∗+u2

(40)

where [z∗−u1,z∗+u2] is the bunching region with diffusion, in which u1 = u2 = 0 under sharping

bunching. The inferred zact,initial for shifters forms the alternative counterfactual density distri-

bution hact,initial(z),∀z < (z∗ − u1)
z∗−∆̂z∗,act

initial

z∗ ,40 whereas the observed density distribution for

always-takers is the same as the counterfactual density distribution, i.e., hact,initial (z) = h(z) ,∀z >

z∗+u2.

Next, we obtain the counterfactual density for bunching agents based on the assumption

that the alternative counterfactual density distribution is smooth. Specifically, we use the standard

approach in the bunching literature to fit a flexible polynomial to the counterfactual distribution for

the never-takers and shifters outside the region [(z∗−u1)
z∗−∆̂z∗,act

initial

z∗ ,(z∗+ u2)], and extrapolate

the fitted distribution inside the region. Empirically, we group agents into z bins indexed by j, and

estimate the following regression:

hact,initial
j =

p

∑
k=0

βk(z
act,initial
j )k + ε j (41)

if zact,initial
j < (z∗−u1)

z∗− ∆̂z∗,act
initial

z∗
or zact,initial

j > (z∗+u2),

40When we relocate shifters back to their original location, we reshape observed density dis-
tribution h(z),∀z ∈ (zmin,z∗− u1) into h(zct z∗

z∗−∆̂z∗,act
initial ) ≡ hct,initial(zct,initial),∀zact ∈

(
zmin,(z∗−

u1)
z∗−∆̂z∗,act

initial

z∗
)
.
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where hact,initial
j is the number of agents in bin j; zact,initial

j is the inferred z level in bin j based on

the initial guess ∆̂z∗,act
initial

; and p is the polynomial order. The counterfactual bin counts in the

region
[
(z∗−u1)

z∗−∆̂z∗,act
initial

z∗ ,(z∗+u2)
]

are obtained as the predicted values from Equation (41).

After recovering the hact,initial (z) for the full range of z, excess bunching (with diffusion) at

the threshold can then be computed as41

B̂initial =
∫ z∗−1

z∗−u1

(
h(z)−hshi f t(z)

)
dz+

∫ z∗+u2

z∗

(
h(z)−hact,initial(z)

)
dz, (42)

where hshi f t(z) denotes the density of shifters under the kinked policy. Note that to the left of

the bunching region, the observed density distribution contains only shifting agents, and hence,

hshi f t(z) = h(z) for z < z∗−u1. However, within the diffuse region [z∗−u1,z∗), the observed post-

kink density distribution contains both shifters and diffused bunchers. Assuming that hshi f t(z) is

smooth, we then use the observed distribution h(z) in the region z < z∗ − u1 to extrapolate the

distribution of shifting agents in the diffusion region [z∗−u1,z∗).

Third, we compute the updated ∆̂z∗,act
updated

based on the following relation:

B̂initial =
∫ z∗−1

z∗−∆̂z∗,act
updated hact,initial(z)dz, (43)

and check whether ∆̂z∗,act
updated

equals ∆̂z∗,act
initial

. If ∆̂z∗,act
updated

> ∆̂z∗,act
initial

, we increase the

value of ∆̂z∗,act
initial

and repeat the above steps until we have ∆̂z∗,act
updated

= ∆̂z∗,act
initial

. Follow-

ing the above process, we obtain the estimated marginal adjustment ∆̂z∗,act and the counterfactual

density distribution ĥact().

B.2.2. Estimating Counterfactual Outcome Distribution and Parameters

First, never-takers (z > z∗) do not respond to the kinked policy (z = zact) but pay less money

(like a lump-sum transfer, ∆T =∆t×z∗) under the kinked policy. Hence, their outcome distribution

is a parallel shifting along the y-axis compared to their alternative counterfactual distribution.

Specifically, from Equation (39 ), we have yn = yact
n + λ∆t × z∗. Given that z = zact for never-

takers, we have yact(zact) = y(z)−λ∆t × z∗,∀zact = z > z∗.

Second, for shifters, we have recovered marginal bunchers’ responses ∆z∗,act and each shifter’s

41The excess bunching at the threshold under the sharp bunching is B̂initial = h(z∗) −
hact,initial(z∗).
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counterfactual location zact = z z∗−∆z∗,act

z∗ ,∀z < z∗ which forms the alternative counterfactual density

distribution. To make sure that we are comparing the same shifter under the counterfactual and

the kinked policies, we locate shifters back to their initial location, which generates the auxiliary

outcome distribution under kinked policy yr(zact),∀zact < z∗−∆z∗,act .42 It represents each shifter’s

value of y under the kinked policy, including the direct impacts from changes in z and the impacts

from changes in T , while excluding the relocation impacts (as we have located shifters back to

their counterfactual locations).

As shown in Equations (35, 36), there would be both level and slope changes when compar-

ing the counterfactual outcome distribution yact(zact),∀zact < z∗−∆z∗,act with the auxiliary out-

come distribution under the kinked policy yr(zact),∀zact < z∗−∆z∗,act . Moreover, if we extrapolate

the obtained auxiliary distribution yr(zact) to the cutoff z∗, then the slope and the level change at

z∗ could be used to calibrate the sufficient statistics µ,λ as shown in Equations (35, 36). These

parameters represent how changes in z directly impact y and how changes in T (due to change in z

and the kinked policy) impact y.

Empirically, we jointly estimate the alternative counterfactual outcome distribution yact and

the slope and level changes. Specifically, we use the observed outcome distribution for never-

takers, y(z),∀z= zact > z∗+u2, and the obtained auxiliary outcome distribution for shifters, yr(zact),∀zact <

(z∗−u1)
z∗−∆z∗,act

z∗ to fit a flexible polynomial distribution, allowing intercept and slope changes at

the threshold. The estimation equation for the counterfactual outcome distribution is as follows:

yreg
j =

q

∑
k=0

αk(zact
j )k +a0I

[
zact

j < z∗
]
+a1I

[
zact

j < z∗
]

zact
j + ε j (44)

if zact
j < (z∗−u1)

z∗−∆z∗,act

z∗
or zact

j > (z∗+u2)

where j indicates the bin; and q is the polynomial order; yreg
j = y j for never-takers with zct

j >

(z∗+u2), and yreg
j = yr

j for shifters with zct
j < (z∗−u1)

z∗−∆z∗,act

z∗ .

It is important to note that never-takers encounter a level change in outcome due to the

lump-sum transfer (∆t × z∗). Therefore,a0 captures the level change between two distributions: (i)

the auxiliary outcome distribution, (ii) the alternative counterfactual outcome distribution with the

impact from the lump-sum transfer (−λ∆t × z∗). Hence, we calibrate the values of λ ,µ , based on

42Note yr(zact)≡ y(zact z∗
z∗−∆z∗,act ),∀zact < z∗−∆z∗,act .
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the following equations:

a0 +λ∆t × z∗ = µ
( z∗

z∗−∆z∗,act −1
)
−λ z∗

(
t × z∗

z∗−∆z∗,act − (t +∆t)
)

a1 = −λ
(
t × z∗

z∗−∆z∗,act − (t +∆t)
)

With two equations and two unknowns, we can calibrate λ̂ , µ̂ .

Relying on the assumption that the relationship between outcome y and z would be smooth

under the counterfactual policy, we obtain the counterfactual outcome distribution from Equation

(44) as ŷct
j = ∑

q
k=0 α̂k(zact

j )k − λ̂ ∆̂t × z∗.

Meanwhile, the treated outcome for shifters yshi f t
j in [z∗−u1,z∗) is unobserved with diffused

bunching, given that this region contains both shifters and diffused bunchers under the kinked

policy. However, for the range z< z∗−u1, there are only shifters under the kinked policy, therefore,

yshi f t
j = y j for z < z∗− u1. Therefore, we fit a flexible polynomial to the observed distribution of

y j for shifters in the range z < z∗ − u1 and extrapolate the fitted distribution to obtain yshi f t
j in

[z∗ − u1,z∗), with the assumption that the relationship between observed outcome yshi f ter and z

under the kinked policy is smooth to the left of z∗.

Given that we have recovered the counterfactual density distribution, the counterfactual out-

come distribution, and the density and outcome distributions of shifters within the diffuse bunching

region, we can estimate the impacts of the kinked policy on bunchers, shifters, and never-takers

following Equations (33) , (37) and (39).

77



Appendix C: Formation of Counterfactual Outcome Distribution and Treat-

ment Effects

Assume each agent n may have different initial values of y, denoted as ypre(n), which could be of

any functional form.

Card et al. (2015) set up the assumptions on the constant-effect, additive model for identify-

ing the causal effects in regression kink designs. We follow their practice when identifying causal

effects in kink settings with manipulative agents as in the bunching framework. Specifically, we

assume

y(n) = ypre(n)+µ lnz(n)−λT
(
z(n)

)
(45)

where T
(
z(n)

)
is a deterministic and continuous function of z. Under the kinked policy, T

(
z(n)

)
has a kink at z∗. µ ≡ ∆yn

∆ lnzn
, reflecting the direct impact of percentage changes in z on outcome y.

−λn ≡ ∆yn
∆Tn

, reflecting the impact of changes in T on outcome y.

Under the counterfactual policy with a linear low tax/co-payment rate, we have zct = n(1−t)e

and T ct(z) = tzct = tn(1−t)e. Therefore, from Equation (45), we have yct(n) = ypre(n)+µ lnn(1−
t)e −λ tn(1− t)e. Rewrite it in the form of the relation between y and z, we have

yct(zct) = ypre
(

z
(1− t)e

)
+µ lnzct −λ tzct (46)

Under the kinked policy, agents with zct ≤ z∗ (i.e., always-takers) remain unchanged. Agents

with zct > z∗ (i.e., shifters) will reduce their values of z. Specifically, for shifters, we have z =

n(1−t−∆t)e and T (z) = (t+∆t)z−∆tz∗. Therefore, from Equation (45) we have y(n) = ypre(n)+

µ lnn(1− t−∆t)e−λ (t+∆t)n(1− t−∆t)e+λ∆tz∗. Rewrite it in the form of the relation between

y and z, we have

y(z) = ypre
(

z
(1− t −∆t)e

)
+µ lnz−λ (t +∆t)z+λ∆tz∗ (47)

When we relocate shifters back to their counterfactual location to obtain the auxiliary out-
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come distribution, the above Equation (47) would become

yr(zct) = ypre
(

zct

(1− t)e

)
+µ lnzct (1− t −∆t)e

(1− t)e −λ (t +∆t)zct (1− t −∆t)e

(1− t)e +λ∆tz∗ (48)

After relocating shifters back to their counterfactual locations, comparing the values along the

y-axis would give us the treatment effect on “shifters”. That is,

τ
T E,shi f ter
y = yn − yct

n

= yr(zct)− yct(zct)

= µ ln
(1− t −∆t)e

(1− t)e − zct
λ (t +∆t)

(1− t −∆t)e

(1− t)e +λ∆tz∗+ zct
λ t,

= µ ln
z∗

z∗+∆z∗
− zct

λ (t +∆t)
z∗

z∗+∆z∗
+λ∆tz∗+ zct

λ t,

(∀zct > z∗+∆z∗, i.e., ∀n ∈ shi f ters)

Comparing the difference between yct(zct) and yr(zct) from Equations (46, 48), we would no-

tice that the unknown underlying distribution ypre
(

zct

(1−t)e

)
is canceled out, and we are left with

µ ln z∗
z∗+∆z∗ − zctλ (t +∆t) z∗

z∗+∆z∗ +λ∆tz∗+ zctλ t. Further, the difference could be decomposed into

slope change and level change. Specifically, by extrapolating yct(zct) and yr(zct) to the point with

zct = z∗, we would have43

Level Change at z∗ = µ ln
( z∗

z∗+∆z∗
)
−λ (t +∆t)z∗

( z∗

z∗+∆z∗
−1
)

(49)

Slope Change at z∗ = −λ

(
(t +∆t)

z∗

z∗+∆z∗
− t
)

(50)

43we could check slope and level changes at other values of zct as well, by extrapolating yct(zct)
and yr(zct) to the corresponding location and plug into Equation (49)
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Appendix D: Extension with Relabelling under Homogeneous Cost Function

Faced with monetary incentives, agents might engage in misreporting or other relabelling behavior.

Denote zrp,zrl as the reported and real values of z. Denote the degree of misreporting as δ ≡ zrl−zrp

zrl .

Assume that relabeling cost depends on the absolute value and the relative degree of relabeling,

that is, c×zrl ×g(δ ), where c is a fixed parameter, and g′(δ )> 0,g′′(δ )> 0,g(0) = 0.44 Therefore,

the marginal cost of an additional degree of relabelling is czrlg′(δ ).

For illustration purposes, we incorporate relabelling in the setup by Saez (2010) (also illus-

trated in section 2.1). Specifically, the agent’s utility function under a counterfactual linear tax

system is given as follows:

U = zrl − tzrp − n
1+1/e

(
zrl

n
)1+1/e − czrlg(δ ),

where n denotes individual heterogeneity. First-order conditions give us the following optimal

choices:

δ
ct = g′−1( t

c

)
≡ δt

zrl,ct = [1− t(1−δt)− cg(δt)]
en

implying zrp,ct = zrl,ct(1−δt)

This indicates that all agents engage in the same degree of relabelling δ ct and their optimal real

response zrl,ct and reported response zrp,ct are proportional to their ability n.

When a kinked policy is introduced, agents’ real and relabelling behaviors would change.

Following the previous example by Saez (2010) (also introduced in section 2.1), consider a kinked

policy that leaves the marginal tax rate at t for income z ≤ z∗ and sets the marginal tax rate t +∆t

for income z>z∗. Similar to the baseline analysis, we have three groups of agents.

First, agents with zrp,ct ≤ z∗ (i.e., always-takers) face no change in marginal incentives and

44Chen et al. (2021) adopt the same assumption on relabelling cost.
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hence set

δ = δ
ct = g′−1(

t
c
)≡ δt

zrl = zrl,ct =
[
1− t(1−δt)− cg(δt)

]en

zrp = zrp,ct = zrl(1−δt)

∀n ∈ always-takers

Second, agents with zrp,ct > z∗+∆z∗ (i.e., shifters) face a change in the marginal benefit and

adjust their optimal responses accordingly. Specifically, for shifters, we have:

δ = g′−1(
t +∆t

c
)≡ δt+∆t

zrl =
[
1− (t +∆t)(1−δt+∆t)− cg(δt+∆t)

]en

zrp = zrl(1−δt+∆t)

∀n ∈ shifters

This indicates that all shifters engage in the same degree of relabelling δt+∆t and their optimal real

response is proportional to their ability. Moreover, we have

zrl

zrl,ct =

(
1− (t +∆t)(1−δt+∆t)− cg(δt+∆t)

1− t(1−δt)− cg(δt)

)e

zrp

zrp,ct =
1−δt+∆t

1−δt

zrl

zrl,ct =
z∗

z∗+∆z∗
∀n ∈ shi f ters

Therefore, shifters change their reported values of z by a constant percentage.45

Third, agents with zrp,ct ∈ (z∗,z∗+∆z∗] (i.e., bunchers) also face a change in their marginal

incentives but are subject to a corner solution. These agents set zrp = z∗ and bunch at the cutoff.

They choose different optimal degrees of relabelling δ depending on how far their counterfactual

45The last equality follows the baseline analysis that a marginal shifting agent is also a marginal
bunching agent.
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value zrp,ct is away from the cutoff. Specifically, we have:

z∗ =

(
1− cg(δ )− cg′(δ )(1−δ )

)e

(1−δ )n,

zrp = z∗,

zrl =
z∗

1−δ

∀n ∈ bunchers
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